Java 8

Stream
Performance

Angelika Langer & Klaus Kreft

http://www.AngelikaLanger.com/

agenda

e Introduction
* loop vs. sequential stream
 sequential vs. parallel stream

opyrig - y Angelika Langer aus Kreft. ights Reserved. 2
http://www.AngelikaLanger.com/ ()
ast update: 4/23/2015,15:14 Stream Performance

what i1s a stream?

e eguivalent of
sequence from functional programming languages

— object-oriented view: internal iterator pattern
» see GOF book for more details

e Idea

myStream. forEach (s -> System.out.print(s));

4 4

stream operation user-defined functionality
applied to each element

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (3

fluent programming

myStream. filter (s -> s_.length() > 3) | Intermediate

. mapTolnt (s -> s.length) operations
. forEach (System.out::print); | (}SET;R%L

4 4

stream operation user-defined functionality
applied to each element

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (4

obtain a stream

 collection:
myCollection.stream().

° array.
Arrays.stream(myArray).

 resulting stream
— does not store any elements
— Just a view of the underlying stream source

e more stream factories, but not In this talk

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (5

parallel streams

 collection:
myCollection.parallelStream().

° array.
Arrays.stream(myArray) .parallel ().

» performs stream operations in parallel
— 1.e. with multiple worker threads from fork-join common pool

myParallelStream.forEach(s -> System.out.print(s));

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (6

stream functionality rivals loops

myStream.filter(s -> s.length() > 3)
-mapTolnt(s -> s.length)
.forEach(System.out::print);

e Java 8 streams:

myStream.filter(s -> s.length() > 3)
.forEach(s->System.out.print(s.length));

e Since Java 5: for (String s : myCol)
1T (s.length() > 3)
System.out.print(s.length());

> pre-Java 5: Iterator iter = myCol.iterator();
while (iter._hasNext()) {
String s = 1ter.next();
iIT (s.length() > 3)
System.out.print(s.length(Q));

}

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (7

obvious question ...

... how does the performance compare ?

* loop vs. sequential stream vs. parallel stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (8

agenda

e Introduction
* loop vs. sequential stream
 sequential vs. parallel stream

opyrig - y Angelika Langer aus Kreft. ights Reserved.
http://www.AngelikaLanger.com/ ()
ast update: 4/23/2015,15:14 Stream Performance 9

benchmarks ...

... done on an older desktop system with:

— Intel E8500,
» 2 X 3,17GHz
» 4GB RAM

— WIn7
— JDK 1.8.0 05

 disclaimer: your mileage may vary
— l.e. parallel performance heavily depends on number of CPU-Cores

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (10

agenda

e Introduction
 loop vs. sequential stream
 sequential vs. parallel stream

how do sequential stream work?

e example

String[] txt = { "State”, "of", "the', "Lambda",
“"Libraries", "Edition'};

iInt result = Arrays.stream(txt).filter(s -> s.length() > 3)
-mapTolnt(s -> s.length())
.reduce(0, (11, 12) -> 11 + 12);

e filter() and mapTolnt() return streams
— Intermediate operations

e reduce() returns int
— terminal operation,
— that produces a single result from all elements of the stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (12

pipelined processing

Arrays.stream(txt).filter(s -> s.length() > 3)
-mapTolnt(s -> s.length())
.reduce(0, (11, 12) > 11 + 12);

""State" "of" "the"™ "Lambda' ""Libraries'™ "Edition"

o

""State" “"Lambda' "Libraries"'" "Edition"

map Tolnt

v v

11 20 27

5
reduce Q l
0 5

———— code looks like
> really executed

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (13

benchmark with 1nt-array

- Iint[500 _000], find largest element

— for-loop: — -
iInt[] a = iInts;
int e = Ints.length;
int m = Integer.MIN_VALUE;

for (int 1 = 0; 1 < e; 1++)

it (af1] > m) m = a[i];

— sequential stream:

InNt m = Arrays.stream(ints)
.reduce(lnteger _MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved. 14
http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance

results

for-loop: 0.36 ms
seqg. stream: 5.35 ms

= for-loop Is ~15x faster

 are seq. streams always much slower than loops?
— no, this Is the most extreme example

— lets see the same benchmark with an ArrayList<Integer>
» underlying data structure is also an array
» this time filled with Integer values, i.e. the boxed equivalent of int

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (15

benchmark with ArrayList<lInteger>

 find largest element in an ArrayList with 500 000
elements

— For-loop: ¢ n = Integer.MIN VALUE:

for (int 1 : myList)
iIT (G >mm-=1;

— sequential stream:

iInt m = myList.stream()
-reduce(Integer _MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (16

results

ArrayList, for-loop: 6.55 ms
ArrayList, seqg. stream: 8.33 ms

 for-loop still faster, but only 1,27x

e Iteration for ArrayList IS more expensive
— boxed elements require an additional memory access (indirection)
— which does not work well with the CPU’s memory cache

e bottom-line:
— Iteration cost dominates the benchmark result
— performance advantage of the for-loop is insignificant

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (17

some thoughts

e previous situation:
— costs of iteration are relative high, but

— costs of functionality applied to each element are relative low

» after JIT-compilation:
more or less the cost of a compare-assembler-instruction

o what If we apply a more expensive functionality
to each element ?
— how will this affect the benchmark results ?

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (18

expensive functionality

e slowSin()
from Apache Commons Mathematics Library

— calculates a Taylor approximation of the sine function value
for the parameter passed to this method

— (normally) not in the public interface of the library

» used to calculate values for an internal table,
» which is used for interpolation by FastCalcMath.sin()

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (19

benchmark with slowSin()

e int array / ArrayList with 10 000 elements

— for-loop: ¢ a = ints:
int e = a.length;
double m = Double_MIN_VALUE;

for (int i = 0; i < e; i++) {
double d = Sine.slowSin(a[i1]);
y iIf (d>m) m=d;

— sequential stream:

Arrays.stream(ints)
-.mapToDouble(Sine::slowSin)
.reduce(Double_MIN_VALUE, Math::max);

— code for ArrayList changed respectively

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (20

results

int[], for-loop:

int[], seq. stream:
ArrayList, for-loop:
ArrayList, seq. stream:

« for-loop Is not really faster

* [eason.

11.72
11.85
11.84
11.85

ms
ms
ms
ms

— applied functionality costs dominate the benchmark result
— performance advantage of the for-loop has evaporated

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/23/2015,15:14

Stream Performance (2 1)

other aspect (without benchmark)

e today, compilers (javac + JIT) can optimize
loops better than stream code

* [easons:
— linear code (loop) vs. injected functionality (stream)
— lambdas + method references are new to Java
— loop optimization is a very mature technology

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (22

for-loop vs. seq. stream 7/ re-cap

 sequential stream can be slower or as fast as for-loop

e depends on
— costs of the iteration
— costs of the functionality applied to each element

 the higher the cost (iteration + functionality)
the closer Is stream performance
to for-loop performance

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (23

agenda

e Introduction
* loop vs. sequential stream

e sequential vs. parallel stream
—Introduction
—stateless functionality
—stateful functionality

parallel streams

o library side parallelism

— Important feature
» do not know anything about threads, etc.
» very little implementation effort, just: parallel

o performance aspect
— outperform loops, which are inherently sequential

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (25

how do parallel stream work?

e example

final int SIZE = 64;

iInt[] ints = new Int[SIZE];

ThreadLocalRandom rand = ThreadLocalRandom.current();
for (int 1=0; I1I<SIZE; 1++) iInts[i1] = rand.nextInt();

Arrays.stream(ints)

-parallel ()
-reduce(Math: :max)
. 1TfPresent(System.out.printhn(m -> “max 1s: 7 + m));

e parallel (Q’s functionality is based on
the fork-join framework

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/

last update: 4/23/2015,15:14 Stream Performance (26)

fork join tasks

o original task is divided into two sub-tasks

by splitting the stream source Into two parts
— original task’s result are based on sub-tasks’ results
— sub-tasks are divided again ... fork phase

e at a certain depth partitioning stops
— tasks at this level (leaf tasks) are executed
— execution phase

o completed sub-task results
are ‘combined’ to super-task results
— Jjoin phase

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (27

find largest element with parallel stream

reduce((1,jJ) -> Math.max(i,}));

48 63
T22

32 63

32 47

AN

——— fork phase execution

m
48 63 Mmax(Mgp 47 Mug_63)

m
32 47
max(Mg 33 m32_63)
T —
m
0_63
Mi6 31 -
My 31
Mo 15 max(my 15 Mig 21)
N 0_15,M16 31
join phase >

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/23/2015,15:14

Stream Performance (28)

split level

o deeper split level than shown !

— execution/leaf tasks: ~ 4*numberOfCores
» 8 tasks for a dual core CPU (only 4 in the previous diagram)

— 1.e. one additional split (only 2 in the previous graphic)

 key abstractions
— Java.util.Spliterator
— java.util.concurrent.ForkJoinPool .commonPool ()

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (29

what is a Spliterator ?

 spliterator = splitter + iterator

e each type of stream source has its own spliterator type

— knows how to split the stream source
» .. ArrayList_ArrayListSpliterator

— knows how to iterate the stream source
» during execution phase

— also used by sequential streams
to iterate the whole stream source

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (30

what is the CommonPool ?

e common pool is a singleton fork-join pool instance

— Introduced with Java 8

— all parallel stream operations use the common pool
» 50 does other parallel JDK functionality (e.g. CompletableFuture), too

 default: parallel execution of stream tasks uses
— (current) thread that invoked terminal operation, and

— (number of cores — 1) many threads from common pool
» I (number of cores) > 1

o this default configuration used for all benchmarks

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (31

parallel streams + intermediate operations

e what If the stream contains
upstream intermediate operations

. .parallelStream().filter(...)
-mapTolnt(...)
.reduce((1,jJ) -> Math.max(i,}));

when/where are these applied to the stream ?

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (32

find largest element in parallel

filter(...).mapTolnt(...).reduce((1,j) -> Math.max(i1,}));

T

N
=

—

12

A A
VARV,
|

Ty

=

execution

filter <‘ |

rnaprInt<:::\‘
reduce <:::\‘ ! ‘

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (33

.
d
<
d
|

parallel overhead ...

... compared to sequential stream algorithm

o algorithm is more complicated / resource intensive

— create fork-join-task objects
» splitting
» fork-join-task objects creation

— thread pool scheduling

 plus additional GC costs
— fork-join-task objects have to be reclaimed

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (34

agenda

e Introduction
* loop vs. sequential stream

e sequential vs. parallel stream
— Introduction
—stateless functionality
—stateful functionality

back to the first example /7 benchmark parallel

 find largest element, array / collection, 500 000 elements

— sequential stream:

Int m = Arrays.stream(ints)
.reduce(Integer_.MIN_VALUE, Math::max);

int m = myCollection.stream()
.reduce(lInteger.MIN_VALUE, Math::max);

— parallel stream:

Int m = Arrays.stream(ints).parallel()
.reduce(lnteger _MIN_VALUE, Math::max);

int m = myCollection.parallelStream()
.reduce(Integer_.MIN_VALUE, Math::max);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (36

results

Int-Array

ArrayList

LinkedLi1st

HashSet

TreeSet

12.

20.

19.

seq.

.35 ms

.33 ms

74 ms

/6 ms

79 ms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/23/2015,15:14

par.

3.35

6.33

19.57

16.01

15.49

ms

ms

ms

ms

ms

seq./par.

1.60

1.32

0.65

1.30

1.28

Stream Performance (3 7)

result discussion

 why Is parallel LinkedList performance so bad ?
— hard to split

— needs 250 000 iterator’s next() invocations for the first split
» With ArrayList: just some index computation

« performance of the other collections is also not so great

— functionality applied to each element is not very CPU-expensive
» after JIT-compilation: cost of a compare-assembler-instruction

— Iteration (element access) Is relative expensive (indirection !)

» but not CPU expensive
— but more CPU-power is what we have with parallel streams

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (38

result discussion (cont.)

e why Is parallel int-array performance relatively good ?
— Iteration (element access) iIs no so expensive (no indirection !)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance 39

CPU-expensive functionality

e pack to slowSin()

— calculates a Taylor approximation of the sine function value
for the parameter passed to this method

— CPU-bound functionality
» needs only the initial parameter from memory

» calculation based on it’s own (intermediate) results

— Ideal to be speed up by parallel streams with multiple cores

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (40

benchmark parallel with slowSiIn()

o array / collection with 10 000 elements

— array:

Arrays.stream(ints) // .parallel()
-mapToDouble(Sine::slowSin)
.reduce(Double_MIN_VALUE, (1, J) -> Math.max(i, }J);

— collection:

myCollection.stream() // .parallelStream()
-mapToDouble(Sine::slowSin)
.reduce(Double_MIN_VALUE, (1, jJ) -> Math.max(i, }J);

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (41

results

Int-Array

ArrayList

LinkedLi1st

HashSet

TreeSet

10.

10.

11.

11.

11.

seq.

81 ms

97 ms

15 ms

15 ms

14 ms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/23/2015,15:14

par.

6.03

6.10

6.25

6.15

6.30

ms

ms

ms

ms

ms

seq./par.

1.79

1.80

1.78

1.81

1.77

Stream Performance (42)

result discussion

o performance improvements for all stream sources

— by a factor of ~ 1.8
» even for LinkedList

e the ~1.8 Is the maximum improvement on our platform

— the remaining 0.2 are
»overhead of the parallel algorithm
»sequential bottlenecks (Amdahl’s law)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (43

sufficient size (without benchmark)

e Stream source must have a sufficient size,
so that it benefits from parallel processing

* Doug Lea mentioned 10 000 for CPU-Inexpensive funct.
— http://gee.cs.oswego.edu/dl/html/StreamParallelGuidance.html

e 500 000 respectively 10 000 in our examples

— size can be smaller for CPU-expensive functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (44

dynamic overclocking (without benchmark)

e modern multi-core CPU typically increases the
CPU-frequency when not all of its cores are active
— Intel call this feature: turbo boost

* benchmark sequential versus parallel stream
— seq. test might run with a dynamically overclocked CPU
— will this also happen in the real environment or only in the test?

* N0 Issue with our test system
— CPU too old
— no dynamic overclocking

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (45

agenda

e Introduction
* loop vs. sequential stream

e sequential vs. parallel stream
— Introduction
—stateless functionality
—stateful functionality

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance 46

stateful functionality ...

... with parallel streams / multiple threads boils down to
shared mutable state

 costs performance to handle this
— lock, requires waiting
— lock-free CAS, requires retries in case of collision

o traditionally not supported with sequences
— functional programming languages don’t have mutable types, and
— (often) no parallel sequences either

* new solutions/approaches in Java 8 streams

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (47

stateful functionality with Java 8 streams

 Intermediate stateful operations, e.g. distinct()
— see javadoc: This is a stateful intermediate operation.
— shared mutable state handled by stream implementation (JDK)

 (terminal) operations that allow stateful functional
parameters, e.g.
forEach(Consumer<? super T> action)

— see javadoc: If the action accesses shared state, it is responsible
for providing the required synchronization.

— shared mutable state handled by user/client code

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (48

stateful functionality with Java 8 streams (cont.)

o stream’s overloaded terminal operatation: collect()
— shared mutable state handled by stream implementation, and

— collector functionality
» standard collectors from Col lectors (JDK)
» user-defined collector functionality (JDK + user/client code)

e don’t have time to discuss all situations

— only discuss distinct()
— shared mutable state handled by stream implementation (JDK)

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (49

distinct()

» element goes to the result stream,
If it hasn’t already appeared before

— appeared before, in terms of equals()

— shared mutable state: elements already In the result stream
» have to compare the current element to each element of the output stream

 parallel introduces a barrier (algorithmic overhead)

-parallelStream() | statelessOps().-distinctQf statelessOps() .- terminal ()}

v Vv
vV VYyYy

v

two alternative
algorithms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/23/2015,15:14

Stream Performance (50)

two algorithms for parallel distinct()

e ordering + distinct()

— normally elements go to the next stage, in the same order in which
they appear for the first time in the current stage

e Javadoc from distinct()

— Removing the ordering constraint with unordered() may result in
significantly more efficient execution for distinct() in parallel
pipelines, if the semantics of your situation permit.

 two different algorithms for parallel distinct()
— one for ordered result stream + one for unordered result stream

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (51

benchmark with distinct()

e Integer[100 0007, filled with 50 000 distinct values

// sequential
Arrays.stream(integers) .distinct().count();

// parallel ordered
Arrays.stream(integers).parallel () .distinct().count();

// parallel unordered
Arrays.stream(integers).parallel () .unordered() .distinct().count();

* results:
seq .- par. ordered par. unordered
6.39 ms 34.09 ms 9.1 ms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (52

benchmark with distinct() + slowSin()

e Integer[10 000], filled with numbers O ... 9999

Arrays.stream(newlntegers) //.parallel().unordered()
-map(1 -> new Double(2200* Sine.slowSin(i1 * 0.001)).i1ntValue())
.distinct()
.count();

— after the mapping 5004 distinct values

* results:
se(q .- par. ordered par. unordered
11.59 ms 6.83 ms 6.81 ms

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ Stream Pe rfo rmance (5 3)

last update: 4/23/2015,15:14

sequential vs. parallel stream / re-cap

to benefit from parallel stream usage ...

e ... Stream source ...
— must have sufficient size
— should be easy to split

e ... Operations ...
— should be CPU-expensive
— should not be stateful

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (54

advice
* benchmark on target platform !

e previous benchmark:
— find largest element, LinkedList, 500 000 elements

seq .- par . seq./par.
12.74 ms 19.57 ms 0.65

* what If we use a quad-core-CPU (Intel 15-4590) ?
— will the parallel result be worse, better, ... better than seq. ... ?

seq.- par. seq./par.
5.24 ms 4_.84 ms 1.08

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (55

authors

Angelika Langer

Klaus Kreft

http://www.AngelikalLanger.com

http://www.AngelikaLanger.com/

Stream Performance (5 6)

stream pe rformance

© Copyright 2003-2015 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/ ()
last update: 4/23/2015,15:14 Stream Performance (57

