Concurrent Java

Java Programming in
a

Multicore World

Angelika Langer

Trainer/Consultant

http://www.Angel1kaLanger.com/

objective

 take look at current trends in concurrent programming
 explain the Java Memory Model

o discuss future trends such as lock-free programming
and transactional memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ . g ()
last update: 6/1/2010,10:14 multi-core java 2

speaker’s relationship to topic

* Independent trainer / consultant / author

— teaching C++ and Java for 10+ years

— curriculum of a dozen challenging courses
— co-author of "Effective Java" column

— author of Java Generics FAQ online

— Java champion since 2005

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

multi-core java (3)

agenda

* history of concurrency & concurrency
trends

 synchronization and memory model
o fight the serialization — improve scalability
 future trends

Copyright 1995-2 y Angelika Langer aus ights Reserved. 4
http://iwww.AngelikalLanger .com/ . g ()
last update: 6/1/2010,10:14 multi-core java

CPU development

e Moore’s law:

number of transistors doubles every two years

— since 2004: more cores
— until 2004: faster ones
— malin reason: heat

e 2 cores became
standard 2007
— 6-12in 2009 (AMD)

e more complex caches
— hierarchy

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

&L\ CPU-Frequency 1993 - 2005
'I% AMD and Inted

FFFFFFFFFFFFF

—— It i

multi-core java (5)

CPU development implies

* new CPU will not solve your performance problems
— 1f your program does not scale (well) to multiple cores
— l.e.: find (and fight) the serialization

e existing programs
— undetected errors might pop up
— multi-core + caching uncovers synchronization problems

e Java environment

— more and more complex work for
» the byte code compiler, and
»the JIT compiler

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ . g ()
last update: 6/1/2010,10:14 multi-core java 6

Java history — initial MT support

* mostly built into the language (not into the library)
— synchronized block/method — lock in every object
— Object.wait(), Object.notify() — condition in every object

« mainly low level functionality
— no thread pool, no blocking queue, ...

e memory model

— chapter 17 of the Java Language Specification: Threads and Locks
» hard to understand,
»incomplete,
»violated by JVM implementations

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ . g ()
last update: 6/1/2010,10:14 multi-core java V4

Java history — JDK 5.0 MT support

o rework of existing locks and conditions
— Into the library: java.util_.concurrent. locks

— extended functionality
» timeout for existing locks
» new locks: read-write-lock

— approach changed: library is more flexible than language
»think of C

 high-level abstractions
— thread pool: ThreadPoolExecuter, ...
— synchronizers: BlockingQueue, CyclicBarrier, ...
— support for asynchronous programming: Future, ...

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ . g ()
last update: 6/1/2010,10:14 multi-core java 8

(cont.)

 support for lock free programming

— low-level
»abstractions from java.util.concurrent.atomic
— high-level

» ‘concurrent’ collections: ConcurrentHashMap, ...

» reworked memory model

— cleared up what volatile and final mean in a MT context

— defines requirements regarding atomicity, visibility and ordering
of operations

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ . g ()
last update: 6/1/2010,10:14 multi-core java 9

Java keeps up to ...

e ... the needs and requirements of the changing MT uses

e more people build MT programs
— MT patterns and idioms become common knowledge
— need for high-level abstractions

* more people build Java MT programs
for multiprocessor platforms
— need for clear and exact memory model

— wish for better scaling MT abstractions
» need for lock free programming

e former niche becomes main stream with multi core
fcpﬁmAlgggﬁP/MSK a Langer & Klaus Kreft. All Rights Re Ulticcore java (10)

update: 6/1/2010,10:14

architecture history — mid 90ies

* no or insufficient support of threads
— 0N many proprietary unices thread implementation in the user
space:
» blocking read() in one thread blocked all threads of the process

— Java started with a similar model: green threads
» non-preemptive, sometimes obscure behavior

o threads used to structure programs —
not to achieve more through put

— scalability was not an issue, multi-processor systems were rare
» multi-core unknown

— user space threads scalability limited with multi-processors

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 11

architecture history — since then

 trend to asynchronous and parallel computing
to increase throughput

o Java examples

— asynchronous 1/0O
» 1.4 socket, 5.0 sockets + SSL, 7.0 sockets + file system
» essential: frees you from one thread per socket
» but: program structure gets more complex and technical

— JMS introduced 2001

» much later than RMI which was part of Java from the beginning
» effect: EJB became message-driven beans

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 12

(cont.)

* general example:
— AJAX (Asynchronous JavaScript and XML)
— means: user interaction decoupled from HTTP requests

— traditionally
»you select a link / push a button / etc. , and
»a new page gets loaded into your browser

— AJAX example: Google Maps

.............

map elements are

user interaction ST it R asynchronously

) I th s el ange > pulled from the server
e.g. pull the map e A IR via Javascript

to the left el e

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 13

more AJAX

* Google Maps

— user interaction decoupled from HTTP requests

e more asynchronicity
— HTTP push via Ajax

»signal an asynchronous event in the browser
»e.g. incoming telephone call

e alternatives:

— Christian Gross: Ajax Pattern and Best Practices,
chapter 8: Persistent Communication Pattern

— Alex Russell: Comet — Low Latency Data for the Browser
» http://alex.dojotoolkit.org/?p=545

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 14

(cont.)

 both solutions boil down to
a ‘long-lived’” HT TP request from the browser

o persistent communication / long polling / hybrid polling:

— request lives, until the event occurs
»or a ‘long’ timeout occurs (5-10 minutes)

— event is signaled in the response
» or the timeout

— new request to poll the next event

e comet style / HTTP streaming:

— request lives, until the client goes away
— all data is send from the server to the client in the same response

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 15

a small problem

o traditional servlet programming

— one thread:
»receives HTTP request
» determines what has to be done
» gathers the data (and renders the new page)
» sends all this back to the client in a response

« what about an long-lived open HTTP request ?

— that waits for an external event
»e.g. the incoming telephone call

e allocates a thread until
the event occurs / client goes away !
— with 50000 users on the server !

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 16

asynchronous web servers

decouple the request from the response

Jetty 6 Continuation

»Continuation.suspend(), Continuation.resume()
» http://docs.codehaus.org/display/JETTY/Continuations

Tomcat 6.0

» Comet module allows to process 1/0O asynchronously
» http://tomcat.apache.org/tomcat-6.0-doc/aio.html

Java standard for asynchronous web server

»JSR 315 = Servlet 3.0 specification
» scheduled finish by the end of 2008

underlying concept: asynchronous 1/O

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 17

more and more asynchronicity

* not only web server — other servers too

» SOA (service oriented architecture)
— Service -> service -> service ...
— you don’t want to have a waiting thread in each of the server
- l.e.
»asynchronous handling of the request
» MOM (message oriented middleware), means often JMS in Java

e all this means:

— you need multiple threads and some synchronization of these
to tie the external asynchronous channels to your program

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 18

agenda

e history of concurrency & concurrency trends

 synchronization and memory model
o fight the serialization — improve scalability
e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved. 19
http://iwww.AngelikalLanger .com/ - c ()
last update: 6/1/2010,10:14 multi-core java

motivation - why does JMM matter?

e JMM = Java Memory Model

 understanding JMM reveals errors in existing programs
— undetected errors might pop up
— multi-core + caching uncovers synchronization problems

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 20

Java Memory Model (JMM)

 specifies minimal guarantees given by the JVM
— about when writes to variables become visible to other threads

* IS an abstraction on top of hardware memory models

Java Memory Model
* threads read and write to variables

Hardware Memory Model

® processors read and write to caches,
registers, main memory

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 21

Java memory model

e JMM resembles abstract SMP (symmetric multi processing)

machine

o Kkey ideas:

— all threads share the main memory
— each thread uses a local working memory

— flushing or refreshing working memory to/from main memory

must comply to JMM rules

CPU main memory

1

CPU

(Gache);

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

bus

t (Gache)

multi-core java (22)

Java memory model

JMM rules address 3 intertwined 1ssues:

e atomicity
— which operations must have indivisible effects ?
e visibility
— under which conditions are the effects of operations taken by one
thread visible to other threads ?

e ordering

— under which conditions can the effects of operations appear out
of order to any given thread ?

"operations™ means:
— reads and writes to memory cells representing Java variables

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 23

JMM In practice

e examples:

atomicity
— access to variables of primitive type (except long/double) are atomic
— execution of operations in a synchronized block is atomic
visibility
— values written to a volatile variable are visible to other threads
ordering

— effects of operations in a synchronized block appear in order
— accesses to volatile variables appear in order

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 24

seguential consistency

o sequential consistency Is a convenient (yet unrealistic)
mental model:

— Imagine a single order of execution of all programm operations
(regardless of the processors used)

— each read of a variable will see the last write in the execution
order

 JMM does NOT guarantee sequential consistency
— reordering is generally permitted

— specific rules for synchronization, thread begin/end, volatile and
final variables

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 25

hardware memory models

e JVM maps JIMM to hardware memory model

 In shared-memory multiprocessor architectures:

— each processor (or processor core) has its own cache (or even
several layers of caches)

— cache is periodically reconciled with main memory
— cache strategies vary among architectures

=> hardware memory model

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved. 2 6
http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java

barriers and fences

e JVM must use special instructions for memory
coordination (called memory barriers or fences)
— to shield developers from hardware differences
— to implement the JMM rules

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 27

agenda

* history of concurrency & concurrency trends
e synchronization and memory model

— atomicity

— visibility

— ordering
o fight the serialization — improve scalability

e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ()
last update: 6/1/2010,10:14 multi-core java 28

need for atomicity

e non-atomic operations are a problem in case of race

conditions

— interleaved access to shared resources
where at least one access is a modification

thread 1 thread 2
eacs thread 2

array[0] = 1;
I

v
array[0] = 2;

cnt ++; /lent==1
I

|

cnt++; /lent==2

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

multi-core java (29)

atomicity guarantees

 explicit synchronization
— execution of operations in a synchronized block is atomic
— same for operations between acquisition / release of explicit lock

 unsynchronized field access
— access to primitive type (except long/double) is atomic
— access to references is atomic (does not include access to object)
— access to volatile variables (including lTong/double) is atomic
— access to atomic variables is atomic

e cOmmon misconception
— atomicity means we get the most recent value - wrong!
— atomic access to a variable just means:
»we will not get some jumble of bits

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 30

agenda

e history of concurrency & concurrency trends

e synchronization and memory model
— atomicity
— visibility
— ordering
o fight the serialization — improve scalability

e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ()
last update: 6/1/2010,10:14 multi-core java 31

need for visibility

private int[] array; i
private int cnt = 0; <—— mustbe volatile

6&6Iic synchronized void push(int elm) { array|[cnt++] = elm; }
public synchronized int pop(Q) { return(array[--cnt]); }
public int size() { return cnt; }

 access to cnt Is atomic
— no synchronization in size() needed
o visibility problem
— writes performed in one thread need not be visible to other threads

— 1.e. modification of cnt in push()/pop () need not be visible to
size()

- volatile IS needed not for atomicity, but for visibility

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved. 32
http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java

visibility guarantees

« changes made in one thread are guaranteed to be visible
to other threads under the following conditions:

— explicit synchronization

— thread start and termination
— read / write of volatiles

— first read of finals

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 33

visibility guarantee: read /7 write of volatiles

 reading a volatile forces a reload from main memory
 writing to a volatile forces a flush to main memory

e matches our expectation

— when a thread reads a volatile, then all writes are visible
that any other thread performed prior to a write to the same
volatile

 how about volatile references ... ?

e volatile 1s not transitive

— read/write of a volatile reference affects the reference, but not
the referenced object (or array)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ()
last update: 6/1/2010,10:14 multi-core java 34

volatile (since Java 5) - example

Thread O

not volatile — . !
int answer = O;

volatile boolean ready = false;

Thread 1 Thread 2

modified before

~~~ Write to volatile
answer = 42; 1T (ready)
ready = true; print(answer);

must not print 0

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 35



non-transitive volatile - example

Thread O
|

volatile Name name = null;

Thread 1 Thread 2

reference modified before
2~ write to fields

name = new Name(); it (nhame = null)
name.setFirst("Eva™); print(name) ;
name.setLast("'Schulz");

might see empty object

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 36



volatile references

« what do we do to also make the modified object visible?

— make all fields of referenced object volatile
» problem for arrays: array elements cannot be declared volatile

— modify elements before assignment to volatile reference
»all changes made prior to writing to the volatile are flushed

— use explicit synchronization
» viable fallback, at the expense of synchronization overhead

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 37



agenda

e history of concurrency & concurrency trends

e synchronization and memory model
— atomicity
— visibility
— ordering

o fight the serialization — improve scalability
e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 38



need for ordering

ordering is closely related to visibility

JMM is specified in terms of actions

— e.g. reads and writes to variables, locks and unlocks of monitors,
starting and joining threads

JMM defines "happens-before" rules
— partial ordering on actions

— if there is no happens-before ordering between two operations the JVM
Is free to reorder them

miconception: "happens-after"
— there is no "happens-after" rule

— e.g. an action after a synchronized block can happen before or in the
critical section

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 39



reordering problem - example NO'

public class PossibleReorde
private static iInt x = 0,
private static Iint a = 0,

public static void main(String[] args) {
Thread one = new Thread(new Runnable() {

public void runQ { a=1; x = b; }

Thread two = new Thread(new Runnable() {

})publlc void runQ) { b=1; y =a; }

one.start(); two.start(); one.join(); two.join();
System.out.printIn("x=""+x+",y=""+y);

3 J

* Incorrect, due to possible reordering
— result is unpredictable; even x=0 and y=0 can happen

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved. O
http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 4



reordering - example

Thread O

o O

- O < mm

Thread 1 Thread 2

() ()

Can even result in x=0 and y=0!
(as a result of reordering)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 41



ordering

 ordering rules have two aspects:

— within-thread

» thread performing actions in a method
perceives instructions in normal as-if-serial order

— between-thread

» other threads ‘spying’ on this thread
by concurrently running unsynchronized methods
might perceive Instructions in arbitrary order

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 42



ordering guarantees

 ordering of synchronized blocks is preserved
 ordering of read/write of volatile fields is preserved

 ordering of initialization/access to final fields is
preserved

e matches our expectation

— actions in one synchronized block happen (i.e. effects become
visible) before another thread acquires the same lock

— effect of writing to a volatile is visible to all subsequent reads

— all threads will see the correct values of final fields that were set
by the constructor

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 43



agenda

e history of concurrency & concurrency trends
e synchronization and memory model

e fight the serialization — improve scalability
e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 44



performance wise

e cannot buy a faster CPU to speed up the program

— or hope for a faster CPU six/twelve month from now
»When you program feels slow during development

 software must be designed so

that Moare's law
— It can take advantage of the ¢
additional cores / CPUs

— can scale with additional cores / - P
) I Y =,

CPU-Frequency 1993 . 2005
AMD and Intel

mmm

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 45



Amdahl’s law

* named after computer architect Gene Amdahl

— "Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities”, AFIPS Conference Proceedings,
(30), pp. 483-485, 1967.

— Gene Amdanhl has approved the use of his complete text in the
Usenet comp.sys.super news group FAQ which goes out on the
20th of each month

 used In parallel computing to predict the theoretical
maximum speedup using multiple processors

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 46



(cont.)

 Idea: divide work Into serial and parallel portions
— serial work cannot be sped up by adding resources
— parallelizable work can 1

, 1—-F
e Amdahl’s Law: speedup S(F v £ N 2 )

— F is the fraction that must be serialized
— N i1s the number of CPUs

e with N => oo, speedup -> 1/F
— with 50% serialization,
» your program can only speed up by a factor of 2 (with: o CPUS)

e naive idea: from 1 to 2 CPUs = factor of 2 ?

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 47



(cont.)

o fight serialization to improve performance

1.00
2 080
o
1]
o
2 |
2 o0s0 \
5 \.
a \
g \
2 — 0.10%
0.40
(= — 0.50%
1.00%
— 2.00%
— 3.00%
0.20 - = 4.00%
— 5.00%
~— - 10.00%
— — 20.00%
0.00 - 30.00%

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97
MNumber of Processors

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ i . ( )
last update: 6/1/2010,10:14 multi-core java 48



example

producer

\

[
»

consumer

o

[
»

/ LinkedBIockingQueuN

 looks highly parallelizable

— (if producers are slow increase their thread pool)

e 0% serialized ?
— no!

» need synchronization to maintain the queue’s integrity

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

multi-core java (49)



LinkedBlockingQueue.offer()

public boolean offer(E o) {
IT (0 == null) throw new NullPointerException();
final Atomiclnteger count = this.count;
iIT (count.get() == capacity)
return false;
int c = -1;
final ReentrantLock putLock = this.putLock;

putLock.lock();
try {
IT (count.get() < capacity) {
insert(o);
c = count.getAndIncrement();
iIT (c + 1 < capacity)
notFull_signal(;
+
} finally {
putLock.unlock();
iIT (c == 0)
sighalNotEmpty(Q);

return c >= 0;

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 50



(cont.)

* Doug Lea did an excellent job with the implementation
— highly optimized
»split lock: put / take

» count guarded lock-free
» stack-local variables to speed up the execution inside the critical region

>Ill

o structural problem
— serialization of offering threads (producers)
— similar serialization of getting threads (consumers)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 51



serialization

e where/when threads demand concurrent access

 often hidden
— In frameworks / third party abstractions

 other area: asynchronous service architecture

— example: java.nio.channels.Selector
» section on concurrency in the respective JavaDoc

— management to send back the result asynchronously
» Jetty continuation

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 52



fight the serialization ...

... try to reduce lock induced serialization

« smallest critical region possible

— synchronized block vs. synchronized method
» or use explicit locks

— speed up execution inside the critical region
— replace synchronized counters with Atomiclnteger

 lock splitting / striping
— guard different state with different locks
— reduces likelihood of lock contention

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 53



fight the serialization ...

... try to eliminate locking entirely

 replace mutable objects with immutable ones

 replace shared objects with thread-local ones
— e.g. make a copy before passing it to a concurrent thread

 lock-free programming

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 54



agenda

* history of concurrency & concurrency trends
e synchronization and memory model

o fight the serialization — improve scalability

e future trends

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved. 55
http://iwww.AngelikalLanger .com/ - c ( )
last update: 6/1/2010,10:14 multi-core java



trends

 lock-free programming

— supported in Java since JDK 5.0
» Java.util.concurrent.atomic, and
»Concurrent collections in java.util.concurrent

e transactional memory

— neither supported in Java nor in any popular programming
language at the moment

e commonality
— avoid locking to avoid serialization

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 56



agenda

* history of concurrency & concurrency trends
e synchronization and memory model

o fight the serialization — improve scalability

e future trends

— lock free programming
— transactional memory

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 57



CAS

e modern processors have a primitive called compare-
and-swap, or CAS

e a CAS operation includes three operands
— a memory location
— the expected old value
— anew value

 the processor will atomically update the location to the
new value
— 1f the value that is there matches the expected old value
— otherwise it will do nothing

— It returns the value that was at that location prior to the CAS
Instruction

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 58



CAS permits atomic read-modify-write

o CAS allows an algorithm to execute a read-modify-
write sequence

— without fear of another thread modifying the variable in the
meantime

— 1f another thread did modify the variable, the CAS would detect
It (and fail)

— and the algorithm could retry the operation

o CAS-like operation are available in JDK 5.0 as "atomic
variables

— based on the underlying system/hardware/CPU support
— jJava.util._.concurrent.atomic

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 6/1/2010,10:14

multi-core java (59)



example - thread-safe counter

public class SafeCounter {

private volatile int value;

public int getValue() { return value; }
public synchronized int increment() { return ++value; }
public synchronized int decrement() { return --value; }

}

= increment() / decrement() are read-modify-write
operations and must be atomic

— atomic read-modify-write cannot be achieved by making instance
variable volatile

— need to be synchronized
- get() without synchronization, since value Is volatile

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 60



example - thread-safe counter — lock free

public class AtomicCounter {
private Atomiclnteger value;
public Int getValue() { return value.get(); }
public 1nt increment() {
int oldvalue = value.get();
while (!value.compareAndSet(oldvalue,

alue + 1))

oldvalue = value.get();
return oldvalue + 1;

IS atomic}

public int decrement() {
int oldvalue = value.get();
while (!'value.compareAndSet(oldvalue,
oldvalue - 1))
oldvalue = value.get();
return oldvalue - 1;

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 61



lock-free

e advantages
— fast ( ~ 4 times faster than best locks)
— deadlock immunity

 disadvantages
— hard to program !!!
» no simple straight forward approach as with locks

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 62



hard to program, but what you can do

e some strategies
— e.g. lock-free counter, ABA problem, ...

— no single best resource of information known
» best to search the web for ‘lock free programming’

o algorithms for standard data structures
— map, linked list, ...
— Concurrent collections from java.util.concurrent

— use these In your program
»or these in combination with locks

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 63



agenda

* history of concurrency & concurrency trends
e synchronization and memory model
o fight the serialization — improve scalability

e future trends
— lock free programming
— transactional memory

Copyright 1995-2010 by Angelika Langer & Klaus K Rights Reserved.
http://iwww.AngelikalLanger .com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 64



transactional memory ...

e ... or software transactional memory (STM)

 similar to optimistic strategies in database transactions
— e.g. optimistic locking pattern for EJBs

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 65



strategy

 thread does modifications to shared memory/object
— without regards what the other threads are doing

e finished modifications
— commit
» verification that no other thread made concurrent modifications

— abort and rollback
» concurrent modifications occurred
» error handling: (in most cases) retry of the transactions

* Increased concurrency vs. overhead of retrying
transactions that failed

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 66



conceptual pros

e Very intuitive, e.g. update an object in shared memory

— close to the original Java approach
» 0bject = monitor, (publ ic) mutating methods are synchronized

 language integration proposal

— Tim Harris and Keir Fraser: Language Support for Lightweight
Transactions
— http://citeseer.ist.psu.edu/harrisO3language.html

public void addName(String name) {
atomic {
nameCount++;
nameList.add(hame);

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 67



conceptual cons

e abort and rollback
- Implies that you can undo every operation
— what about those that are not memory based ?
»e.g. unbufferd 1/0
— solution possibilities
»add a buffer that can at least hold the changes made in the transaction
» explicit undo operation

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 68



want to try STM ?

* no popular programming language supports STM
— at the moment

e use a more experimental language

— e.g. Clojure
» dynamic programming language, Lisp dialect
» compiles to JVM bytecode

» ... general-purpose language, combining the approachability and
interactive development of a scripting language with an efficient
and robust infrastructure for multithreaded programming ...”

» http://clojure.sourceforge.net/

— there are others too (not compiling to the JVM)

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 69



wrap-up

a trend towards concurrent, asynchronous computing
— MT initally for better structure
— today to overcome synchronicity (messaging, AJAX, ...)

multicore architecture might reveal yet undetected bugs
— due to memory model issues (atomicity, visibility, ordering)

multicore architectures need scalable software to be useful
— avoid serialization - increase concurrency - Amdahl's law

a gaze into the crystal ball
— lock-free programming is already in use (by experts)

— transactional memory might ease concurrent programming some time
In the future

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 70



authors

Angelika Langer

Training & Consulting

Klaus Kreft

SEN Group, Munich, Germany

http://www.angelikalanger.com/Forms/Contact.html

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 71



Java Programming in a Multicore World

© Copyright 1995-2010 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://imwww.AngelikaLanger.com/ - c ( )
last update: 6/1/2010,10:14 multi-core java 72



