
Angelika Langer
Trainer/Consultant

http://www.camelot.de/~langer/

STL Gotchas

Avoiding Common Errors in
Using the STL

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (2)

Agenda

 Insertion and deletion might invalidate references, pointers,
and iterators.

 A set iterator must not allow modification of the elements.
 Function objects must neither have side effects nor modify

container elements.
 Comparators must not be polymorphic.
 Associative containers use induced equivalence, whereas

algorithms use equality.
 Adapted iterators cannot be passed to container operations.
 Stream iterators on the same stream are not independent of

each other.
 Allocators must exhibit static behavior.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (3)

STL Pitfall #1

Invalidation of
references, pointers, and

iterators

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (4)

All container in the STL ...

 are of dynamic size, i.e. they grow as needed
 allow insertion and removal of elements via member

function insert() and erase()
 provide iterators that give access to the contained elements
 provide iterators to the beginning and end of the sequence

Consider a program that
reads lines from an input file,
sorts them, and
writes the result of sorting to an output file,
using a list as the temporary store.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (5)

Inserting elements to a list

void doIt(const char* in,const char* out)
{ list<string> buf;

list<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(insAt,linBuf);

buf.sort();

ofstream outFile(out);
copy(buf.begin(),buf.end(),

ostream_iterator<string>(outFile,"\n"));
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (6)

Insert at a specified position

iterator list::insert(iterator position,

const value_type& value)

Inserts a copy of value before the specified position.
The returned iterator points to the newly inserted copy of value.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (7)

Inserting elements to a list

insAt =

end

iterator

empty

list
#1

insAt

#1
#2

insAt

...

#1
#2 #3

insAt

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (8)

Inserting elements to a set

void doIt(const char* in,const char* out)
{ set<string> buf;

set<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(insAt,linBuf);

ofstream outFile(out);
copy(buf.begin(),buf.end(),

ostream_iterator<string>(outFile,"\n"));
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (9)

Insert with hint

iterator set::insert(iterator position,

const value_type& value)

Inserts a copy of value.
Inserts only if there is no element in the container with the

same value.
The returned iterator points to the element with the same

value.

The iterator position is a hint. It should point to where
the value should be inserted.
The hint has no effect on correctness, only on performance.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (10)

Inserting elements to a set

empty

set
insAt =

end

iterator

#1

insAt

#1

#2
insAt

...
#2#3

#1

insAt

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (11)

Inserting elements to a vector

void doIt(const char* in,const char* out)
{ vector<string> buf;

vector<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(insAt,linBuf);

sort(buf.begin(),buf.end());

ofstream outFile(out);
copy(buf.begin(),buf.end(),

ostream_iterator<string>(outFile,"\n"));
}

<<<<<< crash !!!

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (12)

Typical implementation of vector

Al
Alberto
Alesa
Amr
Amy
Andy

start

finish

end_of_storage

size

capacity

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (13)

Inserting elements to a vector

empty

vector insAt =

end

iterator

#1
start

finish

end_of_storage

size

capacity insAt

end

iterator

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (14)

So, what’s going wrong ... ?

 doIt() is built on the assumption that an iterator (insAt =

buf.end()), that is valid in one context (with an empty
vector), is still valid in another context (after insertion to
the vector).

 There is no such guarantee.

void doIt(const char* in,const char* out)
{ ...

vector<string>::iterator insAt = buf.end();
...
while(getline(inFile,linBuf))

buf.insert(insAt,linBuf);
...

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (15)

Validity guarantees for insertion

For associative containers and list:
 Does not affect the validity of iterators and references.

For vector:
 Causes reallocation if the new size is greater than the old

capacity.
 Reallocation invalidates all the references, pointers, and

iterators.
 If no reallocation happens, all the iterators and references

before the insertion point remain valid.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (16)

Inserting elements to a vector

Does not only apply to the end iterator, but to any iterator after the
point of insertion:

 Insertion moves all elements after the point of insertion to the
back.

 All references to elements after the point of insertion become
invalid.

 In particular, the point of insertion itself becomes invalid as a
side effect of the insertion.

Consider a program that
inserts a line at a specific position, say, before any line that
starts with a capital letter.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (17)

Inserting elements to a vector

void doIt(const char* in,const char* out)
{ vector<string> buf;

// ... populate vector ...

vector<string>::iterator insAt = buf.begin();

while ((insAt = find_if(insAt,buf.end(),isUpper()))
!= buf.end())

{ buf.insert(insAt,”text to be inserted");
insAt+=2;

}
}

<<<<<< crash !!!

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (18)

Inserting elements to a vector

insAt #1
start

finish

end_of_storage

size

capacity
#2

#3

insAt #1
start

finish ==
end_of_storage

size

capacity

insertion

#2

#3
insAt+=2

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (19)

Inserting elements to a vector

insAt

start

finish ==
end_of_storage

size

capacity

#1

insertion

#2

#3

#1

insertion

#2

#3

size

capacity

start

end_of_storage

finish

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (20)

Back to the initial problem ...

void doIt(const char* in,const char* out)
{ vector<string> buf;

vector<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(insAt,linBuf);

sort(buf.begin(),buf.end());

ofstream outFile(out);
copy(buf.begin(),buf.end(),

ostream_iterator<string>(outFile,"\n"));
}

<<<<<< crash !!!

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (21)

A suggested solution

insert() returns an iterator to the newly inserted element.
Use this new, valid position as the point of insertion for

subsequent insertions.

void d(Itconst char* in,const char* out)
{ ...

while(getline(inFile,linBuf))
insAt = buf.insert(insAt,linBuf);

...
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (22)

Another Solution

More elegant and easier to comprehend is the use of the
push_back() function instead of the insert() function.

void doIt(const char* in,const char* out)
{

deque<string> buf;
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.push_back(linBuf);

...
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (23)

Not yet considered ...

Validity guarantee for insertion into a deque:
 An insert in the middle invalidates all the iterators and

references.
 An insert at either end of the deque invalidates all the

iterators to the deque, but has no effect on the validity
of references.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (24)

A typical deque implementation

first

current
last

first

current
= last

first

current

last

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (25)

Validity guarantee for erase()

For associative containers and list:
 Invalidates only iterators and references to the erased

elements.
For vector:
 Invalidates all the iterators and references after the point of

the erase.
For deque:
 An erase in the middle invalidates all the iterators and

references to elements of the deque.
 An erase at either end invalidates only the iterators and the

references to the erased elements.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (26)

STL Pitfall #2

Mutable or Immutable
Set Iterators ?

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (27)

A set container in the STL ...

 is implemented as a binary tree
 needs a strict weak ordering for the elements
 allows insertion and removal of elements via insert() and

erase(), which use the ordering for maintaining the tree
structure

 provides iterators that give access to the contained elements

Note:
 Elements must not be modified through an iterator

because direct manipulation of the elements would corrupt
the tree structure.

 A set implementation need not provide a mutable iterator.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (28)

Conceivable implementations

Details are still an open issue (#103 on the library issue list of
August 1999). Two implementations for set iterators are
conceivable:

constant iterator:
 fool-proof: no chance to modify the elements in-place
 restrictive: cannot change parts of the element that do not

contribute to the ordering
mutable iterator:
 security hole: can inadvertently corrupt the tree structure

Consider a program that
implements a bank account class,
creates a set of bank accounts, and
tries to assign to an element through an iterator.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (29)

Modification through a set iterator

class account {

…

size_t _number; // determines ordering

double _balance; // irrelevant for ordering

};

bool operator<(const account& lhs, const account& rhs)

{ return lhs._number < rhs._number; }

set<account> s;

…

set<account>::iterator iter;

…

*iter = *new account; // direct modification of element

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (30)

Obvious mistake

Overwriting an element in the tree structure is likely to destroy the
structure.

Result:

constant iterator:
– error message; will not compile
mutable iterator:
– will corrupt the tree structure; subsequent behavior is

unpredictable

set<account>::iterator iter;
…
*iter = *new account; // direct modification of element

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (31)

Suggested solution

Never “replace“ an element in a set;
insert the new one and erase the old one.

set<account>::iterator iter;
…
s.insert(iter, *new account);

s.erase(iter);

set<account>::iterator iter;
…
*iter = *new account; // direct modification of element

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (32)

Modification through a set iterator

class account {

…

size_t _number; // determines ordering

double _balance; // irrelevant for ordering

};

bool broke(const account& acc)
{ return acc.balance() <= 0; }

set<account> s;

…

// remove element if balance is 0 or less

set<account>::iterator garbage;

garbage = remove_if(s.begin(),s.end(),broke),s.end();

s.erase(garbage,s.end());

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (33)

A less obvious mistake

remove_if() is a mutating algorithm, that is, it performs in-
place modifications on the container elements via the iterator.

Result:
constant iterator:
– error message; will not compile
– warning: “discards const”; will corrupt the tree structure
mutable iterator:
– will corrupt the tree structure; subsequent behavior is

unpredictable

set<account>::iterator iter;
…
garbage = remove_if(s.begin(),s.end(),broke),s.end();

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (34)

The remove() algorithm

remove

4 6
-3 20 0 33 4 5 4 44 1 1

6
-3 20 0 33 5

44 1 1 44 1 1

returned
iterator

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (35)

Suggested solution

Never apply mutating algorithms to a set;
instead of (mutating) remove_if()
use inspecting) find_if().

set<account>::iterator fnd;
for (fnd=find_if(s.begin(),s.end(),broke)

;fnd!=s.end()
;fnd=find_if(fnd,s.end(),broke))

{ s.erase(fnd++); }

// remove element if balance is 0 or less

set<account>::iterator garbage;

garbage = remove_if(s.begin(),s.end(),broke),s.end();

s.erase(garbage,s.end());

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (36)

Modifiying part of the element

set<account> s;

…

set<account>::iterator iter;

…

// direct modification of part of the element

iter->balance = 1000000;

class account {

…

size_t _number; // determines ordering

double _balance; // irrelevant for ordering

};

bool operator<(const account& lhs, const account& rhs)

{ return lhs._number < rhs._number; }

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (37)

Not at all a mistake

The balance does not contribute to the ordering relationship.
Modifications of the balance would not affect the tree structure.

Result:
constant iterator:
– error message; will not compile
mutable iterator:
– works nicely

set<account>::iterator iter;

…

// direct modification of part of the element

iter->balance = 1000000;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (38)

Conceivable solutions

If the set iterator does not allow modification of the
insignificant part of the element:

 Cast away constness.
 Provide a const member function in class account that

performs the desired modification.
 Implement an iterator adapter that allows the desired

modification.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (39)

The Brute Force Approach

Cast away constness:

set<account>::iterator iter;

…

// direct modification of part of the element

(const_cast<double>(&(iter->_balance))) = 1000000;

set<account>::iterator iter;

…

// direct modification of part of the element

iter->balance = 1000000;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (40)

A little more sophisticated

Encapsulate the cast into a const member function of the account class:

class account {

public:

void setBalance(double b) const

{ *const_cast<double*>(&_balance) = b; }

…

private:

size_t _number; // determines ordering

double _balance; // irrelevant for ordering

};

…

iter->setBalance(1000000);

Safety hole: can also modify constant objects of type account

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (41)

An iterator adapter

Define an iterator adapter balanceIter that adapts the set iterator.
Its dereference operator returns a non-const reference to the balance of the

element pointed to.

set<account>::iterator iter;

…

// direct modification of part of the element

*balanceIter(iter) = 1000000;

set<account>::iterator iter;

…

// direct modification of part of the element

iter->balance = 1000000;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (42)

A simple iterator adapter

class balanceIter {

public:

explicit balanceIter(set<account>::iterator i)

:_i(i) {}

double& operator*() const

{ return *const_cast<double*>(&_i->_balance); }

balanceIter& operator++() { ++_i; return *this; }

// ... postfix ++, pre- and postfix -- ...

private:

set<account>::iterator _i;

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (43)

The 3 suggested solutions

 Casting away constness is the brute force approach; it can
and should be avoided.

 Providing a const member function that performs the
modification is error-prone; allows modification of const
objects.

– Not a viable solution if the implementation of the account class
must not be changed.

 The iterator adapter is the most flexible solution:
– cast is safely encapsulated;
– no change to the account class necessary;
– no security hole; cannot change elements through constant iterators
– can apply algorithms to the adapted iterator

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (44)

Conclusions

 It’s unfortunate that details of the set iterator are still an
open issue.

– impairs portability efforts
 Avoid direct access through a set iterator to any part that is

significant to the ordering of elements.
– Never allow lvalue use of a dereferenced set iterator.

 Avoid applying mutating algorithms to sets.
– Read the damned manual.

 If you want to modify a non-significant part and need to get
around the const-restriction, build proper abstractions.

– see for instance the iterator adapter

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (45)

STL Pitfall #3

Function objects
must not have

side effects

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (46)

Function objects in the STL ...

 are accepted as arguments to numerous algorithms
 can be function pointers of functors
 must not have side effects
 must not modify container elements through an iterator

Consider a program that
removes duplicates (with the same id) from a container,
accumulates any information associated with the id,
defines a functor to perform the compression, and
calls unique() passing the functor to get the job done.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (47)

An insurance application

struct accident {
string owner; string insurance;
string date; bool dumped;

};
struct insuranceRec {

insuranceRec(long id, const list<accident>& c);
long vehicleId;
list<accident> crashes;

};

multiset<insuranceRec> clients;
// ... populate container ...
clients.erase(// clean up: remove duplicates

unique(clients.begin(), clients.end(), mergeRec()),
clients.end());

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (48)

Clean up

#1

id

info
#2

id

info

#2

id

info
#3

id

info

#4

id

info

Task:
•remove duplicates (with the same id)
•merge the associated information into the remaining entry

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (49)

Clean up

#1

id

info #2

part
1

id

info

part
2

#3

id

info
#4

id

info

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (50)

Implementing the clean up

We want to use the unique() algorithm for elimination of
consecutive duplicates:

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator
unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

We need to define a predicate that
 determines the duplicates (i.e. it must check for identical

ids) and
 produces a side effect (i.e. merging the associated info)

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (51)

The function object type

class mergeRec {
public:

bool operator()(insuranceRec& lhs,
const insuranceRec& rhs)

{ // predicate: check for same id
bool sameId = (lhs == rhs);

if (sameId)

// produce side effect: append rhs-info to lhs-info
copy(rhs.crashes.begin(), rhs.crashes.end(),

inserter(lhs.crashes,lhs.crashes.end()));

return sameId;
}

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (52)

The element type

struct accident {
string owner; string insurance;
string date; bool dumped;

};

struct insuranceRec {
insuranceRec(long id, const list<accident>& c);
long vehicleId;
list<accident> crashes;

};

bool operator==(const insuranceRec& lhs,
const insuranceRec& rhs)

{ return lhs.vehicleId == rhs.vehicleId; }

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (53)

The unique() algorithm

unique

returned
iterator

4 4 8 10 11
18

20 21 24

4

11 18

8 10 11 18 20
24

20 21 24

4

21 18

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (54)

Doing the clean up

multiset<insuranceRec> clients;
// ... populate container ...
clients.erase(// clean up: remove duplicates

unique(clients.begin(), clients.end(), mergeRec()),
clients.end());

#1

id

info
#2

part
1

id

info

part
2

#3

id

info
#4

id

infopart
2

Surprise!

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (55)

What happened?

 Our predicate does not only check for the duplicates but in
addition produces a side effect (i.e. merging the associated
info).

Function objects must not have side effects and
must not modify any element through an iterator.

 Both is violates, which does not always create problems,
but in our case we do not know how often the unique()
algorithm produces the predicate’s side effect.

It is unspecified how often an algorithm invokes a
function object on the same (pair of) element(s).



© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (56)

Implementation of unique()

template <class ForwardIterator, class BinaryPredicate>

ForwardIterator

unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate binary_pred)

{

first = adjacent_find(first, last, binary_pred);

return unique_copy(first, last, first, binary_pred);

}

adjacent_find() return the first element of a series of duplicates.
unique_copy() copies all elements except for consecutive duplicates.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (57)

Conceivable solutions

 Do not provide functions (or function objects) that produce
side effects to any STL algorithm.

– implement side effects separately
– use STL algorithms only for side-effect-free operations

 Implement your own version of unique() so that you have
control over the number of side effects produced.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (58)

Side-effect-free predicate

Instead of calling unique() with our mergeRec predicate
 call adjacent_find() with a side-effect-free predicate

eqRec and equal_range() to identify any duplicates and
 produce the side effect independently of the STL.

class eqRec {
public:

bool operator()(const insuranceRec& lhs,
const insuranceRec& rhs)

{ return (lhs == rhs); }
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (59)

The actual logic
multiset<insuranceRec> clients;
// ... populate container ...
typedef multiset<insuranceRec>::iterator iterType;
iterType duplicate = clients.begin();
while (duplicate!=clients.end())

{ // identify duplicates
duplicate =

adjacent_find(duplicate,clients.end(),eqRec());

// merge info and erase duplicates
if (duplicate!=clients.end())
{ pair<iterType,iterType> range;
range = clients.equal_range(*duplicate);
compress(range);
clients.erase(++(range.first),range.second);

}
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (60)

Producing the side-effect

template <class Iterator>
void compress(pair<Iterator,Iterator> range)
{

range.second--;
copy(range.second->crashes.begin(),

range.second->crashes.end(),
inserter(range.first->crashes,

range.first->crashes.end())
);

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (61)

Customizing unique()

Instead of calling the STL unique() implement your own
version in order to gain control of the side effects produced.

 pro:
– portable, reusable
– potentially more efficient

 con:
– extra effort required

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (62)

User-defined version of unique()

template <class ForwardIterator, class BinaryPredicate>
ForwardIterator
my_unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate binary_pred)
{ if (first == last) return last;

else { ForwardIterator next = first;
while(++next != last)
{ if (!binary_pred(*first, *next)) first = next;

else // duplicate found
{ while (++next != last)

if (!binary_pred(*first, *next))
*++first = *next;

return ++first;
}

}
return last;

}
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (63)

Evaluation

 using STL version of unique() with a side-effect producing
predicate

– elegant and readable, but non-portable

 using customized version of unique() with a side-effect
producing predicate

– still elegant and readable, but also portable
– extra effort required

 strict separation between side-effect-free predicate and a side-
effect producing function

– comparable to customized unique() regarding effort and
complexity

– portable, but probably not reusable

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (64)

Further problematic cases

 function objects that modify any part of an element that is relevant to the
ordering

– There is no mechanism to make sure that only immutable iterators are
provided to a function object.

– Hence you can change whatever you like - even corrupt the container.

 function objects that depend on how often they are invoked
– The number of produced side effects is not specified.
– Any side-effect-producing function object falls into this category.

 function objects that depend on how often they are copied, assigned, or
destroyed

– It is unspecified how many temporary copies of a function object ara
algorithms creates.

– All function objects that have non-constant state and accumulate data
between subsequent invocations fall into this category.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (65)

Function objects with state

Example:
 Our side-effect producing predicate might make a note (in

an internal list) of all duplicates that it finds.

Problem:
 Hardly any algorithm returns the function objects that it

received.
– How do I get hold of the accumulated data?
– The predicate writes the entire information to a global or

static location when it is destroyed.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (66)

References to function objects

for_each() is the only algorithm that returns the function
object.

An alternative approach for getting access to the object state:
 Pass the function objects by reference rather than by value.

– Requires explicit function arguments specification syntax and
creates lifetime dependencies.

unique(clients.begin(), clients.end(), mergeRec());

would become

mergeRec predicate;

unique<mergeRec&>(clients.begin(), clients.end(),

predicate);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (67)

Destructor with side effects

The predicate writes the entire information to a global or static
location when it is destroyed.

 The destructor has a side effect.
 It is unspecified

– how many temporary copies of the function object are
created inside unique() and

– how often the destructor is invoked.

Rule:
 Never create functions objects that produce side effects

when they are created, copied, or destroyed.
 This is common sense for any class, but even more

important for types that are provided to the STL.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (68)

Implementation of unique()

template <class ForwardIterator, class BinaryPredicate>

ForwardIterator

unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate binary_pred)

{

first = adjacent_find(first, last, binary_pred);

return unique_copy(first, last, first, binary_pred);

}

We cannot tell how often the predicate is copied unless we
also study the implementations of adjacent_find() and
unique_copy().

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (69)

Restrictions to function objects

 Never create functions objects that produce side effects when
they are created, copied, or destroyed.

– This is common sense for any class, but even more
important for objects that are provided to the STL.

 Be careful with function objects that create side effect when
they are invoked.

– It is not at all uncommon that functions have side effects.
 Be careful with function objects that modify the elements

through the iterator.
– It is not at all uncommon that functions which take

pointers/references modify the pointed to objects, and
iterators have pointer-like semantics.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (70)

STL Pitfall #4

Comparators
must not be polymorphic

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (71)

Polymorphic comparators

 It’s a common technique to implement a family of compare
policies as a class hierarchy with a common base class and
to invoke the policies through base class reference for
polymorphic behavior. (See the Strategy pattern à la GOF.)

 The associative containers accept a reference to a
comparator object; hence one could pass a base class
reference.

 However, they store a copy of the comparator object
internally, the result of which is object slicing.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (72)

STL Pitfall #5

Equality vs.
induced equivalence

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (73)

Equality vs. equivalence

 The associative containers use an induced equivalence
relation for maintaining the underlying tree structure.

 The equivalence is educed from the ordering, i.e., the
comparator that is provided to the container.

 Container member functions use the equivalence relations
for finding equal elements in the container.

 STL algorithms use an equality relation on the iterator’s
value type for finding equal elements.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (74)

Equality vs. equivalence

 Can lead to surprising results when equality and
equivalence are different.

Example: case-insensitive string compare
 Strings that are equivalent (regarding case) are not

necessary equal.
 Consider a multiset of strings with case-insensitive order in

conjunction with “set” algorithms such as union() or
intersection(.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (75)

STL Pitfall #6

Type incompatibility of
adapted iterators

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (76)

Adapted iterators

 STL algorithms accept any kind of iterator type, because
they are function templates.

 Container member functions only accept their own iterator
type.

Example:
 A container element is searched for by passing reverse

iterators to find().
 The resulting iterator cannot be passed to the container’s

erase() function.
 When implementing an iterator adapter, never forget ot

implement the base() member function.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (77)

STL Pitfall #7

Several stream iterators
on the same stream

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (78)

Interdependent stream iterators

 Stream iterators on the same stream are not independent of
each other.

 Advancing one iterator affects all other iterators on the
same stream, because it changes the underlying stream
position.

 For input stream iterators:
– Increment means reading from the stream.
– Dereferencing means providing the stored, previously read

value.
 For output stream iterators:

– Increment and dereferencing are NOPs.
– Assignment to the iterator means writing to the stream.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (79)

Interdependent stream iterators

 Reaching the end iterator means failure of the read/write
operation, i.e. reaching end of input or an error situation.

Example: 2 input stream iterators for reading a string and a
float

 Reading a string also moves the float iterator.
 Reading a float when there is a string on the file turns the

float iterators into an end iterator; the string iterator can still
read.

– The frozen float iterator cannot be reset.
– The stream state must be cleared and a new float iterator must be

created.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (80)

STL Pitfall #8

Allocators must exhibit
static behavior

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (81)

Static allocators

Allocators of the same type must be interchangeable,
i.e. must not have state.

Reason:
 Two containers of the same type, i.e. using the same type of

allocator, can have different allocator objects.
– Example: database allocators to different databases

 If the two containers are assigned to each other, all
elements must be copied. Which allocator must be used?

 There’s no universal answer.
 The problem evaporates when all allocators of the same

exhibit the same behavior.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (82)

References
Generic Programming and the Stl
Matthew H. Austern
Addison Wesley Longman, 1998

The C++ Standard Library
Nicolai M. Josuttis
Addison Wesley Longman, 1999

C++ Report (SIGS Publications) Columns
Effective Standard Library - Klaus Kreft & Angelika Langer
Sutter’s Mill- Herb Sutter
The (B)leading Edge - Jack Reeves

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.camelot.de/~langer/
last update: 5/10/2010 ,20:06 (83)

Contact Info
Angelika Langer
Training & Mentoring
Object-Oriented Software Development in C++ & Java

email: langer@camelot.de
http: //www.camelot.de/~langer/

