ANSI C++

Making Your Programs
Exception-Safe

Angelika Langer

Trainer/Consultant

http://www.Angel ikaLanger.com

Why Exception Handling ?

Before exception handling it was
impossible to indicate errorsin
constructors, overloaded
operators, and destructors.
— Either they have no return code,
or
— thereturn codeis used for
purposes other than error
reporting, e.g. operator chains.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Programming With Exceptions

e Useof exceptions pervades
an entire application and
cannot be localized.
— An exception can be catches
propagated up the call
stack.
- Each exception
“terminates’ the
respective current block.

ka Langer. All Rights Reserved

Programming With Exceptions

e Throwing an exception is easy; writing code that uses a
throwing function is hard.

e Exceptions cannot beignored.
e We must cope with them when they occur, even if we are not willing
to handle them.
— An exception terminates the current block,
— current operations are aborted before they are finished,
— objects might be left in inconsistent states, and
- acquired local resources might not be released.

ngelika Langer. All Rights Reserved
ol

Exceptions cannot be ignored ...

class date {
public: date(int d, int m int y)
rday(d), mon(m), year(y);
friend i stream&
operator>>(istrean& i s, date& d)
{ return (is >> d.day >> d.non >> d.year); }

An exception can leave the date object half-initialized.
— atypical problem when composite resources are manipul ated

ka Langer. All Rights Reserved

Exceptions cannot be ignored ...

tenpl ate <class T>
voi d Stack<T>::push(const T& el en)
{ mutex_.acquire();

v _[top_] = elem

top_++;

nmut ex_. rel ease();

}

In case of an exception the mutex object would not be released.
- atypical problem with dynamically acquired resources

ngelika Langer. All Rights Reserved
ol

Resour ce Acquisition is I nitialization
Theaut o_pt r template

Functiont r y Blocks

Exceptions in Constructors

Exceptions in Destructors

Some Guidelines

Exception Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Resource Acquisition

void use file (const char* filnam
{ FILE* fil = fopen(filnam"w");

Il usethefilefi |

fclose(fil);

In case of an exception the file would not be closed.

elika Langer. All Rights Reserved

Resource Acquisition

void use file (const char* filnam
{ FILE* fil = fopen(filnam"w");
try {/* usethefilefil */}
catch (...)
{ fclose(fil);
t hr ow;

}

fclose(fil);

Resource Acquisition

e All exceptions are caught and the fileis closed, i.e. the
resourceisreleased, in the cat ch block.

— Error-prone, because it can get rather complicated if numerous
resources are acquired and rel eased.

e A more elegant solution: Wrap resources into classes, and
use constructors for acquisition and destructors for release.

- Destructors are called even when exceptions appear and this way
release is guaranteed.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

A File Pointer Class

clgss FilePtr { “filel.txt"
private: FilePtr

FILE* fp_; FI LE* S
public: - —
FilePtr (const char* filnam const char* nod)
fp_(fopen(filnamnod)) { }
FilePtr (FILE* fp) : fp (fp) { }
~FilePtr() { fclose(fp); }
operator FILE*() { fp_; }

b

ka Langer. All Rights Reserved

Resource Acquisition

void use file (const char* filnam
{ FilePtr fil (filnam"w'");

Il usethefilef i |
} [/l automatically closed via destructor

ngelika Langer. All Rights Reserved
ol

Resource Acquisition is Intialization
Theaut o_ptr template
Functiont r y Blocks

Exceptions in Constructors
Exceptions in Destructors

Some Guidelines

Exception Saftey Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Resource Acquisition

class Thing { /*..* };
void func ()
{ Thing* tp = new Thing;
...
delete tp;

In case of an exception the Thi ng would not be deleted.

elika Langer. All Rights Reserved

The auto_ptr Class

e Useaut o_ptr for dynamically allocated, local objects.

e Anaut o_ptr storesapointer to an object obtained via
new and deletes that object when it itself is destroyed
(such aswhen leaving block scope).

Anaut o_pt r manages an object on the heap.

Use of aut o_ptr

class Thing { /*..* };

void func ()

{ auto_ptr<Thing> tp(new Thing);
...

}

aut o_pt r takes care of deleting Thi ng when leaving the function body
(either on normal return or when an exception appears).

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

The auto_ptr Class

tenpl at e<cl ass X> class auto_ptr {

private:

X* ptr_;

public: // construct/destroy:

explicit auto _ptr(X* p =0) throw()
ptr_(p) {}

~auto _ptr() throwm) { delete ptr_; }
b

elika Langer. All Rights Reserved

void foo() {
static Thing t1;
Thing t 2;
auto_ptr<Thing> tpl(&t1l);
aut o_ptr<Thi ng> t p2(&t 2);

‘ Misuse:
O aut o_ptr doesnot refer to a heap object.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.Angeli r.com
last update: 11/6/

The auto_ptr Class

Theaut o_pt r provides asemantics of strict ownership.
Anaut o_pt r ownsthe object it holds a pointer to.
Copying an aut o_pt r copiesthe pointer and transfers ownership to
the destination.
If morethan oneaut o_pt r owns the same object at the sametime
the behavior of the program is undefined.

Compare to built-in pointers and smart pointers.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Transfer of Ownership

aut o_pt r<Thi ng> t p(new Thi ng) ;
auto_ptr<Thing> tp2 = tp;

o After assignment t p2 ownsthe object, andt p no longer does.
e tpisempty; deletingt p would not delete any Thi ng object
anymore.

Thi ng* p = new Thi ng;
aut o_pt r<Thi ng> tpl(p);
aut o_ptr<Thing> tp2(p);

Misuse:
O Morethan oneaut o_pt r ownsthe Thi ng object.

elika Langer. All Rights Reserved

10

Conventional pointer member:

class X {

™ pt_;

public:

X() @ pt_(new T) {}
~X(){ delete pt_; }
3

Container of pointers:
vector<T*> vl1, v2;

Using auto_ptr

Alternativeusingaut o_ptr:

class X {

auto_ptr<T> apt_;
public:

X() : apt_(new T) {}
~X() {}

3

Using auto_ptr

vl = v2; [/ copiesdl pointersfrom v2 to vl
/li.e.v1 and v2 share ownership of the pointed to

/I e ements

Dontuseaut o_ptr with STL containers!!!

vect or<auto_ptr<T> > vli,

v2;

= ; Il copiesall elementsfrom v2 to v1,
/l'i.e.v2 transfers ownership of al itselementstovl;
/l dl auto_ptrsinv2 are emtpy after this assignment

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

(22)

11

The auto_ptr Class

tenpl at e<cl ass X> class auto_ptr {
public: /Il giveup ownership:

X* rel ease() throw()

{ X* tnp=ptr_; ptr_=0; return tnp; }

public: /I copy constructor:
auto ptr(auto_ptr& a) throw() { ptr_(a.release());

X* get() const throw() { return ptr_; }

X& operator*() const throw() { return *get(); }
X* operator->() const throw() { return get(); }

}s

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Resource Acquisition is Initialization
Theaut o_pt r template
Functiont ry Blocks

Exceptions in Constructors
Exceptions in Destructors

Some Guidelines

Exception Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

}

12

Function t ry Blocks

function try block: mostly equivalent to:

voi d f() void f() {

try { /*functionbody */ } try { /*functionbody*/ }
catch (...) catch (...)

{ /* exception handler */ } { /I* exception handler */ }

Flowing off the end of afunction-try-block is
equivalent to ar et ur n with no value; thisresults in

undefined behavior in a value-returning function.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Function t ry Blocks on Constructors

X i X(Arg a) Catches exceptions from the

try : nmen(0), Base(a) constructor body and the
{ I* congtructor body */ } constructor initiaizer list, i.e.
catch () also from member and base class

_ initializers.
{ /* exception handler */ }

Note: Asusual in afailed constructor, the fully constructed base classes and
members are destroyed. This happens before entering the handler; in the
handler, you cannot access any base classes or members of the object.

Y ou cannot "handl€e" the exception and finish building the object.

Y ou cannot "return” from the handler: When control reaches the end of the
handler, the exception is automatically re-thrown.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
r.com

http:/iwww.AngelikaLanger.c
last update: 11/6/2005 ,13:20

13

Function t ry Blocks on Constructors

e Areuseful for mapping the exception to meet an exception
specification:
class X {
Yy,
public:
class Error {}; // nested exception class
X::X(const Y& y) throw(X: :Error)
try = y_(y)
{ /I* constructor body */ }
catch (...) /I catchespossible exceptionfrom Y::Y
{ throw X::Error(); }

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Function t ry Blocks on Destructors

Xt ~X()

try { /* destructor body */ }
catch (...)

{ /* exception handler */ }

Catches exceptions from the destructor body and from destructors of members and
base classes.

You can "return” from the handler, but
when control flows off the end of the handler, the exception is automatically re-
thrown.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

14

Function try Block on mai n()

int main()

try { /*body*/ }
catch (...)

{ I* exception handler */ }

e Does not catch exceptions thrown by constructors or destructors of
global variables.

ka Langer. All Rights Reserved

Resource Acquisition is Initialization
Theaut o_pt r template

Functiont r y Blocks

Exceptionsin Constructors
Exceptions in Destructors

Some Guidelines

Exception Safety Levels

ngelika Langer. All Rights Reserved
ol

15

Exceptions in new Expressions

What happensif X's constructor throws?

X* pl = new X;
X* p2 new X 256] ;

The memory allocated by theoper at or new() isfreed.
No memory leak!

t 1995-2000 by Angelika Langer. All Rights Reserved
AngelikaLanger.com

g
last update: 11/6/2005 ,13:20

Exceptions in Constructors

Constructors are a special case. If an exception propagates
from an constructor ...

e the partial object that has been constructed so far is
destroyed.

— If the object was allocated with newthe memory is deallocated.

e only the destructors of fully constructed subobjects are
caled.

— The destructor of the object itself is not called.

t 1995-2000 by Angelika Langer. All Rights Reserved
AngelikaLanger.com

g
update: 11/6/2005 ,13:20

16

Exceptions in Constructors

class X {

Ss; Tt_
publi c:

X(const S& s, const T& t)
;s _(s), t_(t) [/l assumeexceptionfrom copy ctor of T
{}
~X() {}
b
Destructor for t _ isnot called, because it was not constructed.
Destructor for s_ iscalled (fully constructed subobject).
Destructor ~X() isnot called.

ka Langer. All Rights Reserved

Exceptions in Constructors

If aresource is obtained directly (not as part of a subobject) a
resource leak can occur.

Only the allocation and construction of subobjectsis reverted
in case of an exception.

— No automatic cleanup for aready performed initializations.

ngelika Langer. All Rights Reserved
ol

Exceptions in Constructors

class X {

S* ps_; T* pt_;

publi c:

X() @ ps_(new S), pt_(new T) {}
~X(){ delete pt_; delete ps_; }
};
Assume an exception is thrown from the constructor of T.

Allocation of the temporary T object fails. Memory allocated withnew T is
deallocated; ~T() isnot called.

The pointersps__ and pt _ are destroyed.
The construction of X fails; the destructor ~X() isnot called.
The object ps__ pointsto is never deleted.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Exceptions from a Constructor Initializer List

How can we catch exceptions from a constructor initializer list?

X:X() try @ ps_(new S), pt_(new T)
{}
catch(...)
{ I/ problem: don't know what happened
I exception can stem from ctor initializer or function body

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Exceptions in Constructors

A solution:

e Not ideal; error-prone in case of numerous dynamically acquired
resources.

X XO){
try {ps_ new S;}
catch(. ..
{ throw, do nothing, because no subobject is constructed yet */ }
try {pt_ = new T;}
catch(. ..
{ delete ps_; }

ka Langer. All Rights Reserved

Exceptions in Constructors

Another solution:
e Initialize pointersto 0, so that you can safely delete them.

X::X() : ps_(0), pt_(0)
{ try { ps_=newsS; pt_ = newT; }
catch (...)
{ delete pt_;
del ete ps_; /l/reverseorder
t hr ow;

ngelika Langer. All Rights Reserved
ol

19

Exceptions in Constructors

Y et another solution: Useaut o _ptr.

class X {

auto_ptr<S> aps_; auto_ptr<T> apt_;
publi c:

X() : aps_(new S), apt_(new T) { }
~X() {}

};

Assume an exception is thrown from the constructor of T.
The subobject apt _ isnot created and need not be destroyed.

The subobject aps__ is destroyed; the destructor of aps__ destroys the object
aps__ pointsto.

ka Langer. All Rights Reserved

Rules

e Avoid resource leaks.
e Use"resource acquisitionisinitialization” for dynamically
acquired resources.

— Wrap resources into aclass, acquirein its constructor, and release
in its destructor.

e Useaut o _ptr for dynamically allocated memory.

ngelika Langer. All Rights Reserved
ol

20

Resource Acquisition is Initialization
Theaut o_pt r template

Functiont r y Blocks

Exceptions in Constructors
Exceptionsin Destructors

Some Guidelines

Exception Safety Levels

Destructors and Exceptions

A destructor can be called

e astheresult of normal exit from ascope, adel et e
expression, or an explicit destructor call, or

e during stack unwinding, when the exception handling
mechanism exits a scope containing an object with a
destructor.

— If an exception escapes from a destructor during stack unwinding
c:std::termnate() iscaled.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

21

Destructors and Exceptions

e Do not let exceptions propagate out of a destructor!

X:

:~X()

try { /* destructor body */ }
catch (...)

{

i f (uncaught _exception())
/I Thisis an exception during stack unwinding.
/l Handleit! Do not re-throw!
el se
/I Thisis harmless. May propagate the exception.

ka Langer. All Rights Reserved

Resource Acquisition is Initialization
Theaut o_pt r template

Functiont r y Blocks

Exceptions in Constructors
Exceptions in Destructors

Some Guidelines

Exception Safety Levels

ngelika Langer. All Rights Reserved
ol

22

Rules

e Do not hide exception information from other parts of the
program that might need them.
— Always rethrow the exception caught in a catch-all clause.

- Re-throw adifferent exception only to provide additional
information.

ka Langer. All Rights Reserved

Hiding Exceptions

tenpl ate <class T> class Stack<T> {
publi c:
struct AllocationError : public bad _alloc
{ size_t stack_size; } // hasadditional information
St ack& operat or=(const Stack(rhs)
{ 1.
try { new buffer = new T[new el ens]; }
catch(...)
{ throw Al'l ocati onError(new el ems); }
...

ngelika Langer. All Rights Reserved
ol

23

Hiding Exceptions

try { new buffer = new T[new el ens]; }
catch(...)
{ throw Al l ocati onError(new el ens); }

What if T::T() throwsan exception?

A caller's handler that is prepared to handle the constructor exception
does not get a chance to do so, and a handler for the allocation error
might try to solve the wrong problem.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Hiding Exceptions

A possible solution:

new _buffer = new(nothrow) T[new el ens];
if (new buffer == 0)
throw Al |l ocati onError(new el ens);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

24

Suppressing Exceptions

A user of afunction might want to suppress any exceptions
thrown by that function.

Give the user away to avoid the exception.
— Supply a check function that can be used to make sure that an
exception cannot occur.
Allow disabling of exceptions.

— global mask (e.g. exception mask in iostreams)
— additional argument (e.g. new(not hr ow()))
— additional function (e.g. at () andoperator[]())

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Rules

Ideally, leave your object in the state it had when the function
was entered.
— Catch exceptions and restore theinitial state.

elika Langer. All Rights Reserved

25

A St ack Class

t enpl at e<cl ass T> cl ass Stack {
size_t nelens_;

size_t top_;

™ v_;

publi c:

size_t count() const { return top_; }
voi d push(T);

T pop();

St ack();

~Stack();

St ack(const Stack&);

St ack& oper at or=(const Stack&);
1

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Possible Exception Sites

tenpl ate <class T>
T Stack<T>:: pop()
{
i f(top_==0)
throw "pop on enpty stack";
/I stack has not yet been modified
I ok; nothing evil can happen here

return v_[--top_];

gelika Langer. All Rights Reserved

last updat

26

Possible Exception Sites

tenplate <class T> T Stack<T>:: pop()
{ if(top_==0) throw "pop on enpty stack";
return v_[--top_];
/[si ze_t decrement and array subscript- ok
I/ return statement creates copy of element of type T
/I copy constructor of T - can fail
/I definitely a problem here!
}

& Decrement happens before copy construction of return value.
& The stack object is modified although the pop() operation fails.

ka Langer. All Rights Reserved

Preserve the object state

tenplate <class T> T Stack<T>:: pop()
{ if (top_==0)
throw "pop on enpty stack";

try { return v [--top_]; }
catch(...)
{ I restore original state

top_++;

t hr ow;

ngelika Langer. All Rights Reserved
ol

27

Rules

e Do not catch any exceptionsif you do not know how to
handle them.
e Avoidcat ch clauses.
— Rewrite functions to preserve state instead of adding catch clauses.
e |f you cannot ignore propagated exceptions, use a catch-all
clause.

ka Langer. All Rights Reserved

Statement Rearrangement

Typical C++ code corrupts object state if assignment fails:
array[i ++] = el ement;

Exception handling is expensive. Don't do this:
try { array[i++] = elenent; }
catch(...) { i--; throw }

Rewrite to:
array[i] = element;
i ++;

ngelika Langer. All Rights Reserved
ol

28

Keep your objects destructible.
— Do not leave dangling pointer in your objects.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.Angelik m
last update: 11/6/2005 ,13:2

The St ack Assignment

tenpl ate <class T>
St ack<T>& oper at or =(const Stack<T>& s)
{
if(& == this) return *this;
delete[] v_;
v_ = new T[nelems_ = s.nelens_];
for (top _=0;top _<s.top_;top_++)
v_[top_] = s.v_[top_];
return *this;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.Angelik m
last update: 11/6/20

29

Possible Exception Sites

tenpl ate <class T>
St ack<T>& oper at or =(const Stack<T>& s)

if(& == this) return *this;
/I pointer comparison and pointer copying for return - ok

delete[] v_;

/I destruction of elements of type T,i.e. T: : ~T() iscalled
/1 ok; if we assume that destructors do not throw

/I deallocation of heap memory - ok

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Possible Exception Sites

tenpl ate <class T>
St ack<T>& oper at or =(const Stack<T>& s)
{..

delete[] v_;

V_ = new T[nelems_ = s.nelens_];

/I dlocation and construction - can fail!

Old array deleted; allocation of new array fails.

Pointer v__isleft dangling.

The St ack destructor will try to delete v_ => disaster!
The St ack object is not even destructible any morel

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

30

Keep St ack destructible

delete[] v_;
_ =new T[nelems_ = s.nelens_];
/[Pointer v__isleft dangling. The St ack object is not even destructible any more!

Rewrite to:

delete[] v_;
v_ = 0; /I TheSt ack destructor can safely deletev .

_ =new T[nelems_ = s.nelens_];

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.Angelik m
last update: 11/6/2005 ,13:2

Rules

Leavevalid NIL objectsif you can't preserve the original state.

— Set object stateto NIL before a critical operation and set to final value
afterwards, i.e. only in case of success.

Perform critical operations through temporaries.
— Modify the object only after successful completion.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.Angelik m
last update: 11/6/20

31

Possible Exception Sites

tenpl ate <class T>
St ack<T>& oper at or =(const Stack<T>& s)

{

delete[] v_; v_ = 0;
v_ = new T[nelems_ = s.nelens_];
for (top_=0;top _<s.top_;top_++)
v_[top_] = s.v_[top_];
I/ assignment operator for type T - can fail!

i

& Stack object isinvalid because copy has been done only partialy.
+ Sincethe old Stack datais already deleted, we cannot leave the Stack inits
origina state.

ka Langer. All Rights Reserved

Leave St ack in a valid NIL state

A solution: Define a NIL object, which represents avalid, but not usable
value. (NULL pointer, zero-size string, emtpy stack)

delete[] v_; v_ = 0;
V_ = new T[s.nelens_];
top_=0; nel ens_=0;
for (size_t i=0;i<s.top_;i++)
v [i] =s.v_[i];
nelems_ = s.nelenms_; top_ = s.top_;
/I Stack object isNIL, i.e. empty, if copy fails.

ngelika Langer. All Rights Reserved
ol

32

Leave St ack untouched

Another solution: Use temporaries and modify the original only after successful
completion.

new buffer = new T[s.nelenms_];
for (size_t i=0;i<s.top_;i++)
new buffer[i] =s.v_[i];
swap(v_, new buffer); delete [] new buffer;
nelems_ = s.nelens_; top_ = s.top_;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

e Avoid resource leaks.
— Use auto pointers.

— Implement an auto array pointer that holds a pointer to an array of
elements.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Eliminate Resource Leak

new buffer = new T[s.nelems_];
for (size_t i=0;i<s.top_;i++)
new buffer[i] =s.v_[i];
swap(v_, new buffer);
delete [] new buffer
nelems_ = s.nelenms_; top_ = s.top_;

The memory alocated for new_buf f er isnot deallocated.
=> resource leak!

ka Langer. All Rights Reserved

An auto_array ptr Class

tenpl ate <class X> class auto_array_ptr {
X* p_;
publi c:
explicit auto_array_ptr(X* p=0) throw)
p_(p) {}
auto_array_ptr(auto_array_ptr<X>& ap) throw()
p_(ap.release()) {}
~auto_array_ptr() { dee€]p; }
voi d operator=(auto_array_ptr<X>& rhs)
L if(& hs!=this) reset(rhs.release()); }

ngelika Langer. All Rights Reserved
ol

34

Use auto array pointer

auto_array_ptr<T>
new _buffer(new T[s.nelens_]);
for (size_t i=0;i<s.top_;i++)
new buffer[i] =s.v_[i];
v_ = new_buffer.swap(v_);
nelems_ = s.nelens_; top_ = s.top_;

ka Langer. All Rights Reserved

Striving for Exception-Safety

e Identify all statements where an exception can appear.

e |dentify all problems that can occur in presence of an
exception. On exit from the function:
— Isthe object still unchanged?
— Isit still inavalid, consistent state?
— Isit still destructible?
— Arethere any resource leaks?

ngelika Langer. All Rights Reserved
ol

35

Resource Acquisition is Initialization
Theaut o_pt r template

Functiont r y Blocks

Exceptions in Constructors
Exceptions in Destructors

Some Guidelines

Exception Safety L evels

© t 1995-2000 by Angelika Langer. All Rights Reserved
h AngelikaLanger.com
last update: 11/6/2005 ,13:20

Exception Safety

A user of afunction isinterested in the guarantees the function
can give when exceptions are propagated.

Document not only the pre- and post conditions and the
"normal" effect of afunction, but also its exception safety
guarantees.

t 1995-2000 by Angelika Langer. All Rights Reserved
AngelikaLanger.com

g
update: 11/6/2005 ,13:20

36

Exception Safety Guarantees

Level 0: No guarantee.
Part of the data the function tried to modify might be lost or corrupted. Access to
the data might cause a program crash.

Level 1: Destructibility.
Part of the data might be lost or in an inconsistent state. It is not possible to
safely to accessto the data. However, it is guaranteed that the data can be
destroyed.

Level 2: No resource leaks.
All objects that the function modifies have their destructors called, either when
f() handles the exception or when those objects' destructors are called.

Level 3: Consistency.
All objects are left in a consistent state, not necessarily the state before f() was
entered, and not necessarily the state after normal termination. All operations on
the data have well-defined behavior. No crashes, no resource leaks, safe access.

Level 4: Full commit-or-rollback.
All objects are left in the state they had before execution of f(). All data values
arerestored to their previous values.

95-20 ka Langer. All Rights Reserved
likal

el
11/6/2

References

The C++ Programming Language, 3rd Edition
Bjarne Stroustrup
Addison Wedley Longman, 1997

M or e Effective C++
Scott Meyers
Addison Wedley Longman, 1996

Exceptional C++

Herb Sutter
Addison Wedley Longman, 1999

ngelika Langer. All Rights Reserved
ol

37

Ten Rulesfor Handling Exception
Handling Sucessfully

Harald M. Miller, January 1996

References

Ten Guidelinesfor Exception
Specification
Jack W. Reeves, July 1996

Exceptions and Debugging
Jack W. Reeves,

st g il B sifians November/December 1996

Jack W. R March 1996 : i
ac Bie) hE Lo Making the World Safe for Exception

Exceptions and Standards Matthew H. Austern, January 1998

Jack W. Reeves, May 1996
Theauto_ptr Class Template
Klaus Kreft & Angelika Langer,
November/December 1998

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

Author

Angelika Langer
Training & Mentoring
Object-Oriented Software Development in C++ & Java

Email: info@Angelikal anger.com
http: www.Angelikal anger.com

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved
http:/iwww.AngelikaLanger.com
last update: 11/6/2005 ,13:20

