Exception Handling in ANSI C++

Programming With Exceptions

Angelika Langer

Trainer/Consultant

http://ww. Angel i kaLanger. com

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (1)

Programming With Exceptions

o Use of exceptions pervades an entire
application and cannot be localized.
—An exception can be propagated up the call stack.

—Each exception "terminates’ the respective current
block.

o Throwing an exception is easy; writing code
that uses athrowing function is hard.
—We will see why.

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (2)

Programming With Exceptions

o Exceptions can pop up everywhere.

o Before exception handling it was impossible to
indicated errors in constructors, overloaded
operators, and destructors.

—Either they have no return code, or

—the return code is used for purposes other than error
reporting, e.g. operator chains

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (3)

Exceptions Everywhere ...

A typical Cidiom:
while (a[i++] = b[]++])

o a and b can beof different types, e.qg. the STL
containers vect or and deque.

o1 and j canbeof differentiterator types.
o Assignment can be overloaded for the element type.

o Converting constructors and cast operators can be
involved.

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (4)

Exceptions Everywhere ...

vector<string> a; deque<char*> b;
vector<string>: :iterator i; deque<char*>::iterator j;

while (a[i++] = b[]++])
actually is a sequence of functions calls each of which
might throw an exception:
while ((a.operator[](i.operator++()))
.operator=(string
(b.operator[](j.operator++()))))

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Technlqu&s (5)

Exceptions Everywhere ...

A typical Cidiom:
while (a[i++] = b[]++])

If an exception appears ...
o wheredid it come from?

The order of evaluation of function argumentsis
unspecified. If an exception appears ...
o what arethe current valuesof a, b,i ,andj ?

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (6)

Programming With Exceptions

o Exceptions cannot be ignored.

o We must cope with them when they occur, even
if we are not willing to handle them.
—An exception terminates the current block,
—current operations are aborted before they are
finished,
—objects might be left in inconsistent states, and
—acquired local resources might not be released.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (7)

Exceptions cannot beignored ...

cl ass date {
publ i c: date(int d, int m int vy)
:day(d), mon(m, year(y);

friend istream&
operator>>(istream& i s, dateé& d)
{ return (is >> d.day >> d.non >> d.year); }

b

An exception can leave the date object half-initialized.
—atypica problem when composite resources are

mani pul ated
last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (8)

Exceptions cannot beignored ...

tenpl ate <class T>
voi d Stack<T>::push(const T& el em
{ mutex_.acquire();
vV [top_] = elem
top_++;
nmut ex_. rel ease();
}
In case of an exception the mutex object would not be
released.
—atypica problem with dynamically acquired
resources

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (9)

Agenda

o Resource Acquisition is|ntialization
Theaut o_pt r template

Exceptions in Constructors

Exceptions in Destructors

Preserve Exception Information

o Preservethe Object State

o An Exception-Safe st ack Implementation

o Exception Safety

o

o

@]

@]

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (10)

Resour ce Acquisition

void use file (const char* fil nam
{ FILE* fil = fopen(filnam"w");

/[l usethefilef i |

fclose(fil);

In case of an exception the file would not be closed.

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (11)

Resour ce Acquisition

void use file (const char* fil nam
{ FILE* fil = fopen(filnam"w");
try {/* usethefilefil */}

catch (...)
{ fclose(fil);
\ t hr ow,

fclose(fil);

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (12)

Resour ce Acquisition

o All excpetions are caught and thefile is closed,
I.e. theresourceisreleased, in the cat ch block.

—Error-prone, because it can get rather complicated if
numMerous resources are acquired and rel eased.

o A more elegant solution: Wrap resources into
classes, and use constructors for acquisition and
destructorsfor release.

—Destructors are called even when exceptions appear
and thisway release is guaranteed.

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (13)

A File Pointer Class

class FilePtr { "filel.txt'
private: Eﬁ%r o>

FILE* fp_; ° T @
publi c:

FilePtr (const char* filnam const char* nod)
fp_(fopen(filnamnod)) { }

FilePtr (FILE* fp) : fp_(fp) { }

~FilePtr() { fclose(fp_.); }

operator FILE*() { fp_; }

¥

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (14)

Resour ce Acquisition

void use file (const char* fil nam
{ FilePtr fil (filnam"w");

/Il usethefilef i |
} [/l automatically closed via destructor

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (15)

Agenda

o Resource Acquisition is Intialization

o Theaut o_ptr template

Exceptions in Constructors

Exceptions in Destructors

Preserve Exception Information

o Preservethe Object State

o An Exception-Safe st ack Implementation

o Exception Safety

o

@]

@]

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (16)

Resour ce Acquisition

class Thing { /*..*};

void func ()

{ Thing* tp = new Thi ng;
...

del ete tp;
}

In case of an exception the Thi ng would not be del eted.

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (17)

Theaut o_ptr Class

o Useaut o_ptr for dynamically allocated, local
objects.

o Anaut o_pt r storesapointer to an object
obtained via new and deletes that object when
it itself is destroyed (such as when leaving block
scope).

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (18)

Usingaut o _ptr

class Thing { /*..*};

void func ()

{ auto_ptr<Thing> tp(new Thing);
I ...

}

aut o_pt r takescare of deleting Thi ng when leaving
the function body (either on normal return or when an
exception appears).

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (19)

Theaut o_ptr Class

tenpl at e<cl ass X> class auto_ptr {
private:

X* ptr_;

publ i c: /I construct/destroy:

explicit auto_ptr(X* p =0) throw()

ptr_(p) {}
~auto_ptr() throw() { delete ptr_; }
}
Exception Handllng © Copyright 1995;?3%:;2&?&:23lﬁ?ﬂgms Reserved. Programmmg Technlqu% (20)

10

Theaut o ptr Class

Theaut o_pt r provides a semantics of strict
ownership.
o Anaut o_ptr ownsthe object it holds apointer to.

o Copyingan aut o_pt r copiesthe pointer and transfers
ownership to the destination.

o If morethan oneaut o_ptr owns the same object at
the same time the behavior of the program is undefined.

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (21)

Transfer of Ownership

aut o_ptr<Thi ng> t p(new Thi ng) ;
auto_ptr<Thing> tp2 = tp;

o After assignment t p2 ownsthe object, andt p no
longer does.

o t pisempty; deletingt p would not delete any Thi ng
object anymore.

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (22)

11

Transfer of Ownership

Thi ng* p = new Thi ng;
aut o_ptr<Thing> tpl(p);
auto_ptr<Thi ng> tp2(p);

Misuse:
o Morethanoneaut o_ptr ownsthe Thi ng object.

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved, Programming Techniques (23)

Theaut o_ptr Class

t enpl at e<cl ass X> class auto_ptr {
public: /I giveup ownership:

X* release() throw()

{ X* tnp = ptr_; ptr_ =0; return tnp; }

public: /I copy constructor:
auto_ptr(auto_ptr& a) throw)
{ ptr_(a.release()); }

}s

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved! Programming Techniques (24)

12

Theaut o_ptr Class

More operations that give up ownership:

t enpl at e<cl ass X> class auto_ptr {
public: /I generic copy constructor:

t enpl at e<cl ass Y>

auto _ptr(auto_ptr<Y>& throw();

public: // generic conversion:
t enpl at e<cl ass Y>
operator auto_ptr<Y>() throw();

¥

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (25)

Theaut o_ptr Class

tenpl at e<cl ass X> class auto_ptr {
public: /I change ownership:

voi d reset (X* p=0) throw)

{ delete ptr_; ptr_ =p; }

public: /[assignment:
auto_ptré& operator=(auto_ptr& a) throw)
{ 1f (&!=this) reset(a.release()); }

tenpl at e<cl ass Y> auto_ptré&
operator=(auto_ptr<Y>& throw);
1

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (26)

13

Theaut o ptr Class

tenpl at e<cl ass X> class auto_ptr {
public: // members:
X* get() const throwm) { return ptr_; }

X& operator*() const throw()
{ return *get(); }

X* operator->() const throw()
{ return get(); }

3

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (27)

Theaut o _ptr Class

Theusesof aut o_ptr include

o providing temporary exception-safety for dynamically allocated
memory,

o passing ownership of dynamically allocated memory to afunction,
and

o returning dynamically alocated memory from afunction.

aut o_pt r cannot be used as the element type of

the STL containers.
o aut o_pt r doesnot meet the CopyConstructible and Assignable
requirements for STL container elements.

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (28)

14

Usingaut o _ptr

Conventional pointer member: Alternativeusingaut o_ptr:
class X { class X {
™ pt_; auto_ptr<T> apt _;
publi c: publi c:
X() : pt_(new T) {} X() : apt _(new T) {}
~X(){ delete pt_; } ~X() {}
}i i
Exception Handling © Copyih 150535 by Aol Lage. Al ihts Resed Programming Techniques (29)

Usingaut o _ptr

Container of pointers:
vector<T*> vl1, v2;
vl = v2; [/l copiesdl pointersfrom v2 to vl
/l'i.e.v1 and v2 share ownership of the pointed to

/I e ements

Dontuseaut o_ptr with STL containers!!!
vector<auto_ptr<T> > vl, v2;
vl = v2; [/l copiesdl elementsfrom v2 to v1,
Il'i.e.v2 transfers ownership of al itselementstovl;
/l dl auto_ptrsinv2 are emtpy after this assignment

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (30)

15

Agenda

o

Resource Acquisition is Intialization

The auto_ptr template

Exceptionsin Constructors

Exceptions in Destructors

Preserve Exception Information

Preserve the Object State

An Exception-Safe st ack Implementation

Exception Safety

o

o

@]

@]

@]

o

o

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (31)

Exceptionsin new Expressions

What happensif X's constructor throws?
X* pl = new X;
X* p2 = new X 256] ;

The memory allocated by the oper at or
new() isfreed. No memory leak!

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (32)

16

Exceptionsin Constructors

Constructors are a special case. If an exception
propagates from an constructor ...
o the partia object that has been constructed so
far is destroyed.
—If the object was allocated with newthe memory is
deallocated.
o only the destructors of fully constructed
subobjects are called.
—The destructor of the object itself is not called.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (33)

Exceptionsin Constructors

class X {
Ss; Tt_
publ i c:
X(const S& s, const T& t)
s _(s), t_(t) //assumeexceptionfrom copy ctor of T

{}
~X(){}
b

Destructor for t _ isnot caled, because it was not constructed.
Destructor for s iscalled (fully constructed subobject).
Destructor ~X() isnot called.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (34)

17

Exceptionsin Constructors

If aresource is obtained directly (not as part of a
subobject) aresource leak can occur.

Only the allocation and construction of subobjects
IS reverted in case of an exception.

—No automatic cleanup for already performed
initializations.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (35)

Exceptionsin Constructors

class X {

S ps_; T* pt_;

public:

X() : ps_(new S), pt_(new T) {}

~X(){ delete pt_; delete ps_; }

1

Assume an exception is thrown from the constructor of T.

Allocation of the temporary T object fails. Memory alocated with
new T isdeallocated; ~T() isnot called.

The pointersps__ and pt _ are destroyed.
The construction of X fails; the destructor ~X() isnot caled.
The object ps__ pointsto is never deleted.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (36)

18

Exceptions from a Constructor Initializer List

How can we catch exceptions from a constructor initializer
list?

X X() try @ ps_ (new S), pt_(new T)
{}
catch(...)
{ /I problem: don't know what happened
Il exception can stem from ctor initializer or function body

}

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved, Programming Techniques (37)

Exceptionsin Constructors

A solution:
o Not ided; error-prone in case of numerous
dynamically acquired resources.

X X)) {
try {ps_ = new S;}
catch(...)
{ throw, /*donothing, because no subobject is constructed yet */ }
try {pt_ = new T;}
catch(...)
{ delete ps_; }
}
Exception Handling © Copyigt 158 sy Al Langr A ighs v Programming Techniques (38)

19

Exceptionsin Constructors

Another solution:

o Initialize pointersto 0, so that you can safely delete
them.

X X() @ ps_(0), pt_(0)
{ try { ps_=new S, pt_ =newT,; }

catch (...)
{ delete pt_;
del ete ps_; [/ reverseorder
t hr ow,
EXCG‘ptiOH Haﬂdllng © Copyright 1995?53?%2&?&223lﬁ;gms Reserved Programming Techniques (39)

Exceptionsin Constructors

Y et another solution: Useaut o_ptr.

class X {

auto_ptr<S> aps_; auto_ptr<T> apt_;
public:

X() : aps_(new S), apt_(new T) { }
~X() {}

1

Assume an exception is thrown from the constructor of T.
The subobject apt _ is not created and need not be destroyed.

The subaobject aps__ is destroyed; the destructor of aps__ destroys
the object aps__ points to.

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (40)

20

Rules

o Avoid resource leaks.
o Use"resource acquisition isinitialization" for
dynamically acquired resources.

—Wrap resources into aclass, acquirein its
constructor, and release in its destructor.

o Useaut o_pt r for dynamically allocated
memory.

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (41)

Agenda

o Resource Acquisition is Intialization
The auto_ptr template

Exceptions in Constructors
Exceptionsin Destructors
Preserve Exception Information
Preserve the Object State

o

o

(@)

@]

@]

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (42)

21

Destructors and Exceptions

A destructor can be called

o astheresult of normal exit from a scope, a
del et e expression, or an explicit destructor
cal, or

o during stack unwinding, when the exception
handling mechanism exits a scope containing an
object with a destructor.

—If an exception escapes from a destructor during stack
unwinding: : std: :term nate() iscaled.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (43)

Destructors and Exceptions

o Do not let exceptions propagate out of a destructor!

X ~X()
try { /* destructor body */ }
catch (...)

{ 1 f (uncaught _exception())
/I Thisis an exception during stack unwinding.
/[Handle it! Do not re-throw!
el se

/[Thisis harmless. May propagate the exception.
}

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (44)

22

Agenda

Resource Acquisition is Intialization
The auto_ptr template

Exceptions in Constructors
Exceptions in Destructors

o Preserve Exception Information

o

o

o

@]

o Preservethe Object State

o An Exception-Safe st ack Implementation

o Exception Safety

Exception Handling o Copyht 19945 s Lo 1 i Resenved Programming Techniques (45)
Rules

o Do not catch any exceptions if you do not know
how to handle them.
—Rewrite functions to preserve state instead of
adding catch clauses.

—If you cannot ignore propagated exceptions, use a
catch-all clause.

—If you get stuck, call t er m nat e() instead of
abort ().

last update: 06.11.2005 ,11:35

EXC@pU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (46)

23

Statement Rearrangement

Typical C++ code corrupts object state if assignment fails:
array[i++] = elenent; //>>

Exception handling is expensive. Don't do this:
try {{array[i++] = elenent; } //>>

catch(...) { i--; throw }
Rewrite to:
array[i] = elenent; //>>
i ++;
Exception Haﬂd“ng © Copyright 199‘5?:&3“55?%2&&1:23liﬁewgms Reserved Programming Technlqu% 47)

o Do not hide exception information from other
parts of the program that might need them.

—Always rethrow the exception caught in a catch-all
clause.

—Re-throw a different exception only to provide
additional information.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (48)

24

Hiding Exceptions

tenpl ate <class T> class Stack<T> {
publi c:
struct AllocationError : public bad_alloc
{ size_ t stack_size; } /I hasadditiona information
St ack& operat or=(const Stacké& rhs)
{ 1.
try { new buffer = new T[new el ens]; }
catch(...)
{ throw Al locationError(new elens); }
...

! What's wrong here?

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (49)

Hiding Exceptions

try { new buffer = new T[new el ens]; }
catch(...)
{ throw AllocationError(new el ens); }

What if T::T() throwsan exception?

A caller's handler that is prepared to handle the
constructor exception does not get a chance to do so,
and ahandler for the allocation error might try to solve
the wrong problem.

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (50)

25

Hiding Exceptions

A possible solution:

new buffer = new(nothrow()) T[new el ens];
if (new_buffer == 0)
throw Al | ocati onError(new_el ens);

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (51)

Agenda

o Resource Acquisition is Intialization

The auto_ptr template

Exceptions in Constructors

Exceptions in Destructors

Preserve Exception Information

Preserve the Object State

An exception-safe stack implementation

o

o

@]

@]

@]

o

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (52)

26

A St ack Class

tenpl at e<cl ass T> class Stack {
size_t nel ens_;

size_t top_;

™ v_;

public:

size t count() const { return top_; }
voi d push(T);

T pop();

Stack();

~St ack();

St ack(const Stacké&);

St ack& operat or=(const Stack&);
1

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (53)

Exception-Safe St ack: : pop()

o ldentify all statements where an exception can

appear.

o ldentify all problems that can occur in presence
of an exeption. On exit from the function:
—Isthe St ack object still unchanged?
—Isit still inavalid, consistent state?
—Isit still destructible?
—Arethere any resource |eaks?

o Rewrite the function to meet the goals above!

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (54)

27

The St ack: : pop()

tenpl ate <class T>
T Stack<T>:: pop()

i f(top_==0)
t hrow "pop on enpty stack";
return v_[--top_];
Exception Handllng © Copyright 19951;531‘::92&:1&?\2;lklﬁewgh‘s Reserved. Programmmg Technlqu% (55)

Possible Exception Sites

tenpl ate <class T>
T Stack<T>:: pop()

{
i f(top_==0)
t hrow "pop on enpty stack";
/I stack has not yet been modified
/I ok; nothing evil can happen here
return v_[--top_];
}
Exception Handling © oyt 995 3 oy gl Langer. A ights Reseved. Programming Techniques (56)

28

Possible Exception Sites

tenplate <class T> T Stack<T>:: pop()
{ i1f(top_==0) throw "pop on enpty stack";
return v_[--top_]; //>>
/lsi ze_t decrement and array subscript- ok
/] return statement creates copy of element of type T
/I copy constructor of T - can fail
/I definitely a problem here!

}

Decrement happens before copy construction of return value.
The stack object is modified although the pop() operation fails.

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (57)

L eave object un-modified

return v_[--top_]; //>>

/I definitely a problem here!
/I The stack object is modified although the pop() operation fails.

try { return v [--top_]; }

catch(...)
{ /I restore original state
top_++;
t hr ow,
EXCG‘ptiOH Handli ng © Copyright 1995?53?%2&?&223lﬁ;gms Reserved Programming Techniques (58)

29

Rule

L eave your object in the state it had when the
function was entered.

—Catch exceptions and restore the initial state.

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (59)

Exception-Safe St ack Assignment

o ldentify all statements where an exception can

appear.

o ldentify all problems that can occur in presence
of an exeption. On exit from the function:
—Isthe St ack object still unchanged?
—Isit still inavalid, consistent state?
—Isit still destructible?
—Arethere any resource |eaks?

o Rewrite the function to meet the goals above!

last update: 06.11.2005 ,11:35

Exceptl on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programmi ng Techni ques (60)

30

The St ack Assignment

tenpl ate <class T>
St ack<T>& operat or=(const Stack<T>& s)
{

if(& == this) return *this;

delete[] v_;

V_ = new T[nelens_ = s.nelens_];

for (top_=0;top _<s.top_;top_++)

v [top] =s.v_[top_];
return *this;

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved, Programming Techniques (61)

Possible Exception Sites

tenpl ate <class T>
St ack<T>& operat or=(const Stack<T>& s)

{
if(& == this) return *this;
Il pointer comparison - ok
/Il pointer copying for return - ok
/1 ok; nothing evil can happen here

/I continued on next dide

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved! Programming Techniques (62)

31

Possible Exception Sites

tenpl ate <class T>
St ack<T>& operat or=(const Stack<T>& s)
{
delete[] v_;
/I destruction of elements of type T, i.e. T: : ~T() iscaled
/1 ok; if we assume that destructors do not throw
/ deallocation of heap memory - ok

/I continued on next dide

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (63)

Possible Exception Sites

tenpl ate <class T>
St ack<T>& operat or =(const Stack<T>& s)
{
v_=new T[nelems_ = s.nelens_]; //>>
Il assignment of si ze_t objects - ok
// dlocation of heap memory - can fail!
/I construction of elements of type T - can fail!
I pointer assignment - ok
/I definitely a problem here!

/I continued on next slide

Ed
H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (64)

32

Possible Exception Sites

tenpl ate <class T>
St ack<T>& operat or=(const Stack<T>& s)
{ for (top_=0;top _<s.top_;top_++)
/[assignment, comparison, increment of si ze_t objects - ok

v [top] =s.v_[top]; />>

/[array subscript - ok
/[assignment operator for type T - can fail!

/I definitely a problem herel

return *this;

Ed
H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (65)

Possible Exception Sites

delete[] v_;
v_. =new T[nelens_ = s.nelens_]; //>>
/I definitely a problem here!

Old array is deleted.

Allocation of new array failed.

Pointer v__isleft dangling.

The St ack destructor will try to deletev_ => disaster!

The St ack object is not even destructible any more!

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (66)

33

Possible Exception Sites

delete[] v_;
v_=new T[nelems_ = s.nelens_]; //>>
for (top_=0;top_<s.top_;top_++)
v_[top_] =s.v_[top_]; //>>
/I definitely a problem here!

Stack object isinvalid because copy has been done only partially.
Since the old Stack datais already deleted, we cannot leave the Stack
initsoriginal state.

A solution: Define a NIL object, which represents avalid, but not
usable value. (NULL pointer, zero-size string, emtpy stack)

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (67)

Keep St ack destructible

delete[] v_;

v_. =new T[nelens_ = s.nelens_]; //>>

I/l Pointer v__isleft dangling. The St ack destructor will try to delete
v_ =>disaster!

™ tp = v_;

v_ = 0;

del ete tp;

v_=new T[nelens_ = s.nelens_]; //>>
/ The St ack destructor can safely deletev_ .

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (68)

34

Leave St ack in avalid NIL state

v_=new T[nelens_ = s.nelens_]; //>>
for (top_=0;top_<s.top_;top_ ++)
v [top] =s.v_[top]; />>
/I Stack object isinvalid because copy has been done only partially.

v_ =new T[s.nelens_]; //>>
top_=0; nel ens_=0;
for (size t i=0;i<s.top_;i++)
v_[i] =s.v_ [i]; [I>>
nelenms_ = s.nelens_; top_ = s.top_;
/] Stack object isNIL, i.e. empty, if copy fails.

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (69)

Leave St ack untouched

v_=new T[nelens_ = s.nelens_]; //>>
for (top_=0;top_<s.top_;top_++)
v [top] =s.v_[top]; //>>
/I Stack object isinvalid because copy has been done only partially.

new buffer = new T[s.nelems_]; //>>
for (size t i=0;i<s.top_;i++)
new buffer[i] =s.v_[i]; //>>
swap(v_, new buffer); delete [] new buffer;
nelenms_ = s.nelens_; top_ = s.top_;
/I Stack object is not modified until copy is successfully completed.

H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (70)

35

Rule

Perform critical operations through temporaries.
— Modify the object only after successful completion.

Leave valid NIL objectsif you can't preserve the original
state.

— Set object state to NIL before a critical operation and set to
final value afterwards, i.e. only in case of success.

Keep your objects destructible.
— Do not leave dangling pointer in your objects.
— Delete pointers through temporaries.

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (71)

Eliminate Resour ce L eak

new buffer = new T[s.nelens_]; //>>
for (size t i=0;i<s.top_;i++)

new buffer[i] =s.v [i]; //>>
swap(v_, new buffer);
delete [] new buffer;

The memory allocated for new_buf f er isnot deallocated.
=> resource leak!

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (72)

36

Anauto array ptr Class

o Implement an auto pointer that holds a pointer
to an array of elements.

o Solve the resource leak problem in the Stack
assignment using the auto array pointer.

last update: 06.11.2005 ,11:35

EXCG‘pti on Handli ng © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (73)

Anauto array ptr Class

tenpl ate <class X> class auto_array_ptr {

xX* p_s
publ i c:
explicit auto_array _ptr(X* p=0) throw)
p_(p) {}

auto_array_ptr(auto_array_ptr<xX>& ap) throw()
p_(ap.release()) {}

~auto_array _ptr() { deeeg]lp.; }

voi d operator=(auto_array_ptr<X>& rhs)

% if(& hs!=this) reset(rhs.release()); }

};
H H last update: 06.11.2005 ,11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (74)

37

Anauto array ptr Class

tenpl ate <class X> class auto_array_ptr {

public:
...

X& operator*() const throw() { return *p_; }
X* operator->() const throwm) { return p_; }

X& operator[](si ze_t

{ return p_[i]; }

X* get() const throw) {

...
b

i) const throw()

return p_; }

Exception Handling

last update: 06.11.2005 ,11:35
© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Programming Techniques (75)

Anauto array ptr Class

tenpl ate <class X> class auto_array _ptr {

public:

X* rel ease() throw)

{ X* tp=p_;

p_=0; return tp;

voi d reset (X* p=0)

{ X* tp=p_;
p_=p;

if (tp!'=p) deletel] tp;

X* swap(xX* p) throw)
{ X* tp=p_; p_=p; return tp;

}

Exception Handling

last update: 06.11.2005 ,11:35
© Copyright 1995-98 by Angelika Langer. All Rights Reserved.

Programming Techniques (76)

38

Eliminate Resour ce L eak

new buffer = new T[s.nelens_]; //>>
for (size t i=0;i<s.top_;i++)

new buffer[i] =s.v [i]; //>>

swap(v_, new buffer); delete [] new buffer;
/I The memory allocated for new_buf f er isnot deallocated.
=> resource |eak!

auto_array_ptr<T> new buffer(new T[s.nelens_]);

for (size_t i=0;i<s.top_;i++)
new buffer[i] =s.v_[i];
v_ = new_buffer.swap(v_);
Exception Handling © Copyih 150535 by Aol Lage. Al ihts Resed Programming Techniques (77)
Rules
o Leaveyour object in the state it had when the function

o

was entered.
Perform critical operations through temporaries.

Leave valid NIL objectsif you can't preserve the
origina state.

Keep your objects destructible.

Use auto pointers and "resource acqusition is
initialization" to avoid resource leaks.

Avoid side effects in critical operations.

last update: 06.11.2005 ,11:35

Exception Handling © Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (78)

39

Agenda

o Resource Acquisition is Intialization

The auto_ptr template

Exceptions in Constructors

Exceptions in Destructors

Preserve Exception Information

Preserve the Object State

An Exception-Safe st ack Implementation

Exception Safety

o

o

@]

@]

@]

o

o

H H date: 06.11.2005 ,11:35 . .
EXC@pU on Handli ng © Copyright 1995—98u§yi§gehka Langer. All Rights Reserved Programml ng Techni ques (79)

Exception Safety

A user of afunction isinterested in the guarantees
the function can give when exceptions are
propagated.

Document not only the pre- and post conditions
and the "normal” effect of afunction, but also
its exception safety guarantees.

H H date: 06.11.2005 ,11:35 . .
EXC@pU on Handli ng © Copyright 1995—98ut1yi§gehka Langer. All Rights Reserved Programml ng Techni ques (80)

40

Exception Safety Guarantees

Level 0: No guarantee.
Part of the data the function tried to modify might be lost or
corrupted. Access to the data might cause a program crash.

Level 1. Destructibility.
Part of the data might be lost or in an incosistent state. It is not
possible to safely to accessto the data. However, itis
guaranteed that the data can be destroyed.

Level 2: No resource leaks.
All objects that the function modifies have their destructors
called, either when f() handles the exception or when those
objects destructors are called.

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (81)

Exception Safety Guarantees

Level 3. Consistency.
All objects are left in a consistent state, not necessarily the state
before f() was entered, and not necessarily the state after normal
termination. All operations on the data have well-defined
behavior. No crashes, no resource leaks, safe access.

Level 4. Full commit-or-rollback.
All objects are left in the state they had before execution of f().
All data values are restored to their previous values.

; : last update: 06.11.2005 11:35 . .
EXCG‘DU on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techni ques (82)

41

References

The C++ Programming Language, 3rd Edition

Bjarne Stroustrup

Addison Wesley Longman, 1997

M or e Effective C++
Scott Meyers

Addison Wesley Longman, 1996

Exception Handling

References

C++ Report

Ten Rules for Handling Exception
Handling Sucessfully

Harald M. Mdller, January 1996

Coping with Exceptions
Jack W. Reeves, March 1996

Exceptions and Standards
Jack W. Reeves, May 1996

last update: 06.11.2005 11:35 . .
© Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (83)

Ten Guidelines for Exception
Specification
Jack W. Reeves, July 1996

Exceptions and Debugging
Jack W. Reeves,
November/December 1996

Making the World Safe for
Exception
Matthew H. Austern, January 1998

Exception Handling

last update: 06.11.2005 11:35 . .
© Copyright 1995-98 by Angelika Langer. Al Rights Reserved Programming Techniques (84)

42

Contact Info

Angelika Langer

Training & Consulting
Object-Oriented Software Development in C++ & Java

Munich, Germany

Email: info@Angelikal anger.com
http://www.Angelikal anger .com

last update: 06.11.2005 ,11:35

EXCG‘pﬁ on Handli ng © Copyright 1995-98 by Angelika Langer. All Rights Reserved Programming Techniques (85)

43

