Intensive C++

Implementing
Binary
Operators

Angelika Langer

Trainer/Consultant

http://www.Angel ikaLanger .com

Objective

 Learn about the challenges of implementing binary
operators.

— It'ssimplefor asingle class and quite a challenge for a hierarchy
value types.

Which type of classes ?

We will consider a class hierarchy of classes with the
following properties:

» value semantics
— acommon casein C++
— object "owns' its data members

» composition by inheritance
— as opposed to "by delegation”
— base classis a concrete (non-abstract) class
— derived classes add data members

Langer. All Rights Reserved

binary operators (3)

Which type of functions ?

We will consider functions with the following properties:

* redefined in the class hierarchy
— implemented in the base class
— redefined by every derived class

 self-referential binary functions
— work on two objects of the same type
— examples: copying, comparing, ...

Langer. All Rights Reserved

binary operators (4)

Agenda

» Assignment Operator
» Comparison Operator

binary operators (5)

A Class Hierachy

class Point2D
{

public: ...
Point2D& operator=(const Point2D& rhs); (:)
}:
class Point3D : public Point2D
{

public: ..
Point3D& operator=(const Point3D& rhs); (:)
}:
class ColoredPoint : public Point2D

{

public: ...
ColoredPoint& operator=(const ColoredPoint&(ijB);

};

or. All Rights Reserved

binary operators (6)

Problem

* Invocation through references leads to mixed-type
assignment and object dlicing.

void someFunction(Point2D& lhs, Point2D& rhs)

R invokes
3 - ’ Point2D: :operator=()

ColoredPoint red, blue;

someFunction(red,blue); assigns 2D part

of colored points
ColoredPoint red;

Point3D origin;

someFunction(red, origin); assigns 2D part

of colored and 3D point

binary operators (7)

Object Slicing

Col or edPoi nt Poi nt 3D

2D
part

3rd

di nensi on
part

Langer. All Rights Reserved

binary operators (8)

Other cases ...

* Invocation through references to base and derived type:

void someFunction(Point2D& center, ColoredPoint& loc)

{...

invokes
Point2D: :operator=0)

loc = center; does not compiley

center = loc;

binary operators (9)

Other cases ...

* Invocation through references to derived type:

void someFunction(Point3D& rhs, Point3D& lhs)
{ ...

invokes

rhs = lhs; Point3D: :operator=()

anger. All Rights Reserved.

binary operators (10)

Non-Virtual Assignment

Point2D& Point3D&

static type

dynamic type Colored
Point2D | Point3D Point Point3D

Point2D dice dice
Point3D slice dlice slice
i ColoredpPoint | dlice dice | dlice

©) Point3D

Point3D &

gelika Langer. All Rights Reserved.

binary operators (11)

What's the problem ... ?

* no pass-by-value, yet object dlicing - what'swrong ... ?

class Point2D

public:
Point2D& operator=(const Point2D& rhs);
}.

class Point3D : public Point2D
{
public: ..
Point3D& operator=(const Point3D& rhs); .
}: functions
class ColoredPoint : public Point2D

{
public:

ColoredPoint& operator=(const ColoredPoint& rhs);

};

or. All Rights Reserved

binary operators (12)

Another Class Hierachy

class Point2D

{
public: ...
virtual Point2D& operator=(const Point2D& rhs); (:)
};
class Point3D : public Point2D

{

public: ..

virtual Point3D& operator=(const Point2D& rhs);
};
class ColoredPoint : public Point2D

{
public: ...

virtual ColoredPoint& operator=(const Point2D& rhi:D

binary operators (13)

Problem

* Invocation through references leads to mixed-type
assignment and potential crashes.

void someFunction(Point2D& lhs, Point2D& rhs)

invokes virtual function

invokes Point3D: :operator=_)

Point3D origin;
ColoredPoi red;

someFunction(origin, red); invokes Point3D: :operator=()

assigns Point3D part of ColoredPoint 7?7 |

anger. All Rights Reserved.

binary operators (14)

Problem

 Westill get dlices ...

void someFunction(Point2D& lhs, Point2D& rhs)

lhs = rhs;

SRR

Point2D origin2D;
Point3D origin3D;

someFunction(origin2D,origin3D);

someFunction(origin3D, origin2D),

gelika Langer. All Rights Reserved.

Virtual Assignment

static type

rhS dynamic type

static type dynamic type

Point2D&

Point3D&

or. All Rights Reserved

invokes virtual function

invokes Point2D: :operator={)
assigns Point2D part of Point3D

invokes Point3D: :operator=(|
might crash 7)

binary operators (15)

Point2D& Point3D&

(070] Lo] g=To]

Point2D | Point3D Point Point3D

binary operators (16)

Crash

* Why would certain invocations lead to a crash?

» Behavior depends on the implementation:
— assignment takes base class references
— must do atype check somehow

class Point3D : public Point2D

{
public:
virtual Point3D& operator=(const Point2D& rhs)
{
...iISPoint2D a Point3D ?...

3

elika Langer. All Rights Reserved.

binary operators (17)

Crash

» Worst case implementation:
— blind downcast => program crash

 Friendly implementation
— uses RTTI (dynamic cast or typeid)
— if type check indicates
» same type
— perform assignment
»dlien type
— thrown an exception ?
— perform dlice comparison ?

binary operators (18)

Dynamic Cast

What does a type check via dynamic cast (as opposed
to acheck viatypeid) mean? Isit correct?

class Point3D : public Point2D

{
public:

al P0|nt3D& operator=(const Point2D& rhs)

Point3D& tmp = dynamic_cast<Point3D&>(rhs);
// throws bad_cast exception in case of failure

};
..samefor Point2D and ColoredPoint ...

binary operators (19)

Virtual Assignment

Point2D& Point3D&
static type

dynamic type Colored
Point2D | Point3D i Point3D

rhs

static type dynamic type

Point3D&

binary operators (20)

10

Typeid

» Check for type match and allow assignment only for
objects of the same type.

class Point2D

{
public: ...
i al Point2D& operator=(const Point2D& rhs)

if (typeid(*this) I= typeid(rhs))
throw TypeMismatchException();

... assign Point2D part ...

binary operators (21)

Type Check

class Point3D : public Point2D

{
public: ...
i al Point3D& operator=(const Point2D& rhs)
if (typeid(*this) I= typeid(rhs))
throw TypeMismatchException();

... assign Point3D part ...

};
... samefor ColoredPoint ...

Langer. All Rights Reserved.
binary operators (22)

Invocation

» Type check leads to runtime failure in form of an
exception.

void someFunction(Point2D& lhs, Point2D& rhs)
{--.

lhs = rhs; invokes virtual function

invokes Point3D: :operator=y)

Point3D origin;
ColoredPoint red;
someFunction(origin,red);

invokes Point3D: :operator=_)
throws exception

binary operators (23)

Virtual Assignment

Point2D& Point3D&
static type

dynamic type Colored
Point2D | Point3D Point Point3D

static type dynamic type

o3
()]
(aV}
-
c
o
a

Point3D&

anger. All Rights Reserved.

binary operators (24)

12

Evaluation

 What have we achieved ?

e Symmetric behavior
— A canbeassigned to B if and only if B can be assigned to A

 All combinations compile
— same-type comparison works
— mixed-type comparison fails (at runtime with an exception)

Langer. All Rights Reserved

binary operators (25)

What if ...

... wewanted to permit mixed-type assignment?

» Mixed-type assignment need not be rejected per se.
— al Point2Ds have something in common

— assignment of incompatible Point2Ds could be interpreted as
assignment of common part

e God:

— no dlicing for same-type assignment
— symmetric slice comparison for mixed-type assignment

Langer. All Rights Reserved

binary operators (26)

13

Point2D& Point3D&

static type

Point2D&

Point3D&

binary operators (27)

How can it be implemented ... ?
Two choices:

* table solution
— key: typeid of right- and left-hand side
— value: function pointer to assignment functionality

double dispatch
— uses virtual function table dispatch

Langer. All Rights Reserved

binary operators (28)

14

Dispatch Table

class Point2D
{ -
private:
class DispatchTable
{public:
typedef Point2D&(*fptrType) (Point2D&, const Point2D&);
DispatchTable();
fptrType getFunction(const type_info& lhs,
const type_info& rhs);
private:
map<typeidPair,fptrType> tab;
}:
_static DispatchTable dispatchTable;

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved
http:/www.An cor
last update: 11/6/2

binary operators (29)

Dispatch Table

DispatchTable()

{
const type_info& typPoint2D typeid(Point2D);
const type i typeid(Point3D);
const type_info& typColoredPoint = typeid(ColoredPoint);
tab[typeidPair(typPoint2D ,typPoint2D)] &Point2D: :assign;
tab[typeidPair(typPoint2D ,typPoint3D)] &Point2D: :assign;
tab[typeidPair(typPoint3D ,typPoint2D)] &Point2D: :assign;
tab[typeidPair(typPoint3D ,typPoint3D)] &Point3D: :assign;
tab[typeidPair(typPoint2D ,typColoredPoint)] &Point2D: :assign;
tab[typeidPair(typColoredPoint, typPo 2D)] &Point2D: :assign;
tab[typeidPair(typColoredPoint, typColoredPoint)] &ColoredPoint: :assign;
tab[typeidPair(typPoint3D ,typColoredPoint)] &Point2D: :assign;
tab[typeidPair(typColoredPoint, typPoint3D)] &Point2D: :assign;

b
fptrType getFunction(const type_info& lhs,const type_info& rhs)
{

return tab[typeidPair(lhs, rhs)];

© Copyright 1 y lika Langer. All Rights Reserved

http:/www.A binary operators (30)

last updat

15

Point2D

class Point2D
{public:
Point2D& operator=(const Point2D& rhs)
{ DispatchTabl
= dispatchTable.getFunction(typeid(*this), typeid(rhs));
return fptr(*this,rhs);
}_
private:
static Point2D& assign(Point2D& lhs, const Point2D& rhs)
{ ...perform Point2D assignment ...
return *lhs;

};

binary operators (3 1)

Point3D

class Point3D : public Point2D
{public:

// operator=(const Point2D& rhs) inherited from class Point2D

private:
static Point2D& assign(Point2D& lhs, const Point2D& rhs)
{ ...peform Point3D assignment ...

return lhs;

};

or. All Rights Reserved

binary operators (3 2)

16

Type Info Pair

- type_info objects cannot be copied
— must be passed by reference
- pair doesnot permit reference members
— must wrap type_info objectsinto a wrapper type
- type_info does not have an operator< defined
— must use type_info.before()

class typeidPair
{public:
const type_info& first;
const type_info& second;
typeidPair(const type_info& al, const type_info& a2)
: first(al), second(a2) {}

iﬁline bool operator<(const typeidPair& x, const typeidPairé& y)
{ return x.first_before(y-first) ||
(1 (y-first.before(x.-first)) && x.second.before(y.second));

elika Langer. All Rights Reserved.

binary operators (33)

Double Dispatch

» Double Dispatch uses the vtable as the dispatch table.
— vtable dispatch uses |eft-hand side's type

 ldea: dispatch twice
— dispatch according to left-hand side's type
— switch roles of left- and right-hand side
— dispatch again (according to right-hand side's type)

binary operators (34)

17

Double Dispatch

class Point2D

{public:
Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }

private:
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs) const
{ return ((Point2D&)rhs)._assignPoint2D(*this); }
Point2D& assignPoint2D(const Point2D& rhs)
{ ... perform Point2D assignment ...

return *this;

binary operators (35)

Double Dispatch

class Point3D : public Point2D
{public:
// Point2D& operator=(const Point2D&) inherited from base class
private:
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point3D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs) const
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D & rhs) const
{ return ((Point3D &)rhs).assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs) const
{ return ((Point2D&)rhs)_assignPoint2D(*this); }
Point3D& assignPoint3D(const Point3D& rhs)
{ Point2D::assignPoint2D(rhs);
... perform Point3D assignment ...
return *this;

anger. All Rights Reserved.

binary operators (3 6)

Double Dispatch

Point2D& al = Point2D();
Point2D& a2 = Point2D();
al = a2;

class Point2D

{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs._assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs)._assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point2D& assignPoint2D(const Point2D& rhs);

Langer. All Rights

binary operators (37)

Double Dispatch

D& al = Point2D(); Point2D& a2 = Point3D(); al = a2;

class Point2D

{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs.assignHelper((Point2D&)*this); }
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point2D& assignPoint2D(const Point2D& rhs);

ilass Point3D : public Point2D

{
virtual Point2D& assign(const Point2D& rhs);
virtual Point2D& assignHelper(const Point2D& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D & rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point3D& assignPoint3D(const Point3D& rhs);

nger. All Rights Reserved

binary operators (3 8)

19

Double Dispatch

Point2D& al = Point3D(); Point2D& a2 = Point3D();

class Point2D

{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs);
virtual Point2D& assignHelper(const Point2D& rhs);
virtual Point2D& assignHelper(const Point3D& rhs);
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point2D& assignPoint2D(const Point2D& rhs);

}:
class Point3D : public Point2D

{
virtual Point2D& assign(const Point2D& rhs)

{ return rhs.assignHelper((Point3D&)*this); }

virtual Point2D& assignHelper(const Point2D& rhs)

{ return ((Point2D&)rhs).assignPoint2D(*this); }
virtual Point3D & assignHelper(const Point3D& rhs)

{ return ((Point3D &)rhs).assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point3D& assignPoint3D(const Point3D& rhs);

Langer. All Rights

binary operators (39)

Double Dispatch

Point3D& ml = Point3D();
Point3D& m2 = Point3D();
ml = m2;

class Point3D : public Point2D

{ // inherited operator from base class
Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }
virtual Point2D& assign(const Point2D& rhs)
{ return rhs_assignHelper((Point3D&)*this); 7}
virtual Point2D& assignHelper(const Point2D& rhs);
virtual Point3D & assignHelper(const Point3D & rhs)
{ return ((Point3D &)rhs)._assignPoint3D (*this); }
virtual Point2D& assignHelper(const ColoredPoint& rhs);
_Point3D& assignPoint3D(const Point3D& rhs);

nger. All Rights Reserved

binary operators (40)

20

Double Dispatch

Point2D& al = Point3D(); Point2D& a2 = ColoredPoin

class Point2D
{ Point2D& operator=(const Point2D& rhs)
{ return assign(rhs); }

_Point2D& assignPoint2D(const Point2D& rhs);

¥;
class Point3D : public Point2D

{
virtual Point2D& assign(const Point2D& rhs)

{ return rhs.assignHelper((Point3D&)*this); }

virtual Point2D& assignHelper(const ColoredPoint& rhs)
{ return ((Point2D&)rhs).assignPoint2D(*this); }

class ColoredPoint : public Poi
{ Point2D& operator=(const Poin

virtual Point2D& assignHelper(const Point3D& rhs)
}_{ return ((Point2D&)rhs).assignPoint2D(*this); }

Langer. All Rights

binary operators (41)

Invocation

* Invocation through references leads to mixed-type
assignment and (intended) object dlicing.

void someFunction(Point2D& lhs, Point2D& rhs)

{...
lhs = rhs; triggers double dispatch

3

invokes Point3D: :assignPoint3D()

Point3D origin;
ColoredPoint red; o
someFunction(origin,red); invokes Point2D: :assignPoint2D()

nger. All Rights Reserved

binary operators (42)

Assignment With (Double/Table) Dispatch

Point2D& Point3D&

static type

Point2D&

Point3D&

binary operators (43)

Evaluation

» Double Dispatch isthe classic solution.
— doesnot need RTTI
— less maintainable
» because dispatch logic is spread over al classesin the hierarchy

 Digpatch Table is more maintenance-friendly.

— one central point
» that must be modified when hierarchy grows

Langer. All Rights Reserved

binary operators (44)

22

Assignment Via Values

» Whole discussion only concerns invocation of
assignment operator through references.

void someFunction(Point2D lhs, Point2D rhs)

R invokes
3 ’ Point2D: :operator=()

Invokes base class assignment even if assignment operator is
virtual.

binary operators (45)

Virtual vs. Synthetic Assignment

 Definition of virtual assignment does not prevent generation
of synthetic assignment.

class Point2D
{

public:

virtual Point2D& operator=(const Point2D& rhs);
};
class Point3D : public Point2D .
{ plus synthetic

public: operator=(const Point3D&)

virtual Point3D& operator=(const Point2D& rhs);
};
class ColoredPoint : public Point2D .
{ plus synthetic

public: operator=(const ColoredPoint&)

_virtual ColoredPoint& operator=(const Point2D& rhs);

Langer. All Rights Reserved

binary operators (46)

23

Consistency

» The synthetic assignment should be consistent with the
virtual assignment.

void someFunction(Point3D lhs,Point2D& rhs)
invokes virtual
Point3D: :operator=
(const Point2D& rhs)

4

should have the same effect

void someFunction(Point3D lhs,Point3D rhs)

{--- invokes synthetic

lhs = rhs; Point3D: :operator=
(const Point3D& rhs)

3

@ Langer. All Rights Reserved.

binary operators (47)

Ensuring Consistency (i)

» Explicitly define the "synthetic" assignment.
— implement by delegation to actual assignment

class Point2D
{public: ...
_virtual Point2D& operator=(const Point2D& rhs);

class Point3D : public Point2D
{public: ...
virtual Point3D& operator=(const Point2D& rhs);

Point3D& operator=(const Point3D& rhs)
{ return operator=(static_cast<Point2D&>(rhs)); }

class ColoredPoint : public Point2D
{public: ...
virtual ColoredPoint& operator=(const Point2D& rhs);

ColoredPoint& operator=(const ColoredPoint& rhs)
{ return operator=(static_cast<Point2D&>(rhs)); }

or. All Rights Reserved

binary operators (48)

24

Ensuring Consistency (ii)

» Usevirtual helper function instead of declaring assignment
itself asvirtual.

class Point2D
{public: ...
Point2D& operator=(const Point2D& rhs)
{ return doAssign(rhs); }
protected:
_virtual Point2D& doAssign(const Point2D& rhs);

ciass Point3D : public Point2D
{protected:
_virtual Point3D& doAssign(const Point2D& rhs);

ciass ColoredPoint : public Point2D
{protected:
virtual ColoredPoint& doAssign(const Point2D& rhs);

ngelika Langer. All Rights Reserved
com

binary operators (49)

Non-Virtual vs. Synthetic Assignment
» Synthetic assignment hides inherited assignment.

class Point2D

{

public: ...

Point2D& operator=(const Point2D& rhs);
};
class Point3D : public Point2D

{

public: ... plus synthetic

}; operator=(const Point3D&)
class ColoredPoint : public Point2D

{

ublic:
£ plus synthetic

operator=(const ColoredPoint&)

anger. All Rights Reserved.

binary operators (50)

25

Consistency

» The synthetic assignment should be consistent with the
virtual assignment.

void someFunction(Point3D lhs,Point2D& rhs)

{ ...
Ihs = rhs; does not compile

; /
explicit assignment is never called

N\

invokes synthetic
Point3D: :operator=
(const Point3D& rhs)

void someFunction(Point3D lhs,Point3D rhs)

binary operators (5 1)

Ensuring Consistency

» Avoid hiding of base class operator=.
— insert using directive in derived classes

class Point2D
{public: ...
Point2D& operator=(const Point2D& rhs);
}:
class Point3D : public Point2D
{public: ...
using Point2D::operator=;
}:
class ColoredPoint : public Point2D
{public: ...
using Point2D::operator=;

};

anger. All Rights Reserved.

binary operators (52)

26

Conclusion

e non-virtual assignment
— Leadstoradical dicinginall cases.
— Even derived objects are diced to their base class parts.
— Usually undesired.
* virtual assignment with typeid check
— Eliminates al slicing.
— Mixed-type assignment results in an exception.
* virtual assignment with double/table dispatch
— Allowsdlicingin all cases.
— Mixed-type assignments lead to base class dlicing.

@ Langer. All Rights Reserved.

binary operators (53)

Agenda

» Assignment Operator
e Comparison Operator

anger. All Rights Reserved.

binary operators (54)

27

Comparison

o Comparison for equality (i.e. operator==()) has
similar issues.
— ... and additional ones...

» Keepin mind the following natural requirements to an
equality comparison:
— Reflexivity: X == Xxyieldstrue
— Symmetry: if x == ytheny ==
— Trangtivity: ifx == yandy == z thenx == z

binary operators (55)

A Class Hierachy

» Consider the usual hierarchy of value types:

class Point2D
{
friend
bool operator==(const Point2D& lhs, const Point2D& rhs);

class Point3D : public Point2D
{
friend

bool operator==(const Point3D& lhs, const Point3D& rhs);
}:
class ColoredPoint : public Point2D
{

friend

bool operator==(const ColoredPoint& lhs,

const ColoredPoint& rhs);

Langer. All Rights Reserved

binary operators (56)

28

Invocation

bool compare(const Point2D& lhs, const Point2D& rhs)
{ return (lhs == rhs); }

invokes
operator==(Point2D&,Point2D&)
Point3D origin(0,0,0); i.e. compares only coordinates
Point3D center(0,0,100);
... compare(origin,center) ... invokes
... origin == center ... operator==(Point3D&,
Point3D&)

Point3D origi ,0,0); invokes
ColoredPoint here(0,0,RED); operator==(Point2D&,Point2D&)
... origin == here .. i.e. compares only coordinates

© Copyright elika Langer. All Rights Reserved.

http:/vww. L n binary operators (57)

last update

Comparison

Point2D& Point3D&

static type
rhs ;
dynamic type Colored

athwmf(Wnamcwpe Point2D | Point3D Point Point3D

Point2D dice dice

Point3D dice | dice dice
ColoredPoint dice dice slice

Point3D

Point3D&

nger. All Rights Reserved

binary operators (58)

29

Solution 1

» Same dlicing problem as before with assignment.

« Comparison is symmetric.
— different from assignment
— comparison is not a member function

 Solve the dlicing problem by prohibiting mixed-type
comparison.
— as before with assignment
— perform type check and throw an exception

binary operators (59)

Type Check

class Point2D
{
friend

bool operator==(const Point2D& lhs, const Point2D& rhs);
private:

virtual bool equals(const Point2D& other) const

{ if (typeid(*this) != typeid(rhs))

throw TypeMismatchException();

... compare Point2D part ...
}:

bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); }

Langer. All Rights Reserved

binary operators (60)

30

Type Check

class Point3D : public Point2D
{

friend
bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();

... compare Point3D part ...

... samefor ColoredPoint ...

binary operators (61)

Invocation

bool compare(Point2D& lhs, Point2D& rhs)
{ return (lhs rhs); }

Point3D origin(0,0,0);
Point3D center(0,0,100);)
... compare(origin,center) ... invokes

... origin == center ... I Point3D: :equals(Point3D&)

Point3D orig invokes
ColoredPoint here(0,0,RED); Point3D: :equals(Point3D&)
... origin == here .. i.e. type check fails

or. All Rights Reserved

binary operators (62)

31

Same-Type Comparison

Point2D& Point3D&

)) Colored)
Point2D | Point3D Point Point3D

Point2D&

Point3D

Point3D&

binary operators (63)

Solution 2

» The type check solvesthe problem.
— what if we want to allow mixed-type comparison ?

» Try dispatch solution (using table or double dispatch).
— it worked for the assignment
— why shouldn't it work for comparison as well ?

Langer. All Rights Reserved

binary operators (64)

32

Double Dispatch

class Point2D
{friend bool operator==(const Point2D& lhs,const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ return other.equalsHelper((Point2D&)*this); }
virtual bool equalsHelper(const Point2D& other) const
{ return equalToPoint2D(other); }
virtual bool equalsHelper(const ColoredPoint& other) const
{ return equalToPoint2D((Point2D&)other); }
virtual bool equalsHelper(const Point3D& other) const
{ return equalToPoint2D((Point2D&)other); }
bool equalToPoint2D(const Point2D& other) const
{... compare Point2D part...}

};

bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); }

@ Langer. All Rights Reserved.

binary operators (65)

Double Dispatch

class Point3D : public Point2D
{friend bool operator==(const Point2D& lhs,const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ return other.equalsHelper((Point3D&)*this); }
virtual bool equalsHelper(const Point2D& other) const
{ return equalToPoint2D(other); }
virtual bool equalsHelper(const ColoredPoint& other) const
{ return equalToPoint2D((Point2D&)other); }
virtual bool equalsHelper(const Point3D& other) const
{ return equalToPoint3D(other); }
bool equalToPoint3D(const Point3D& other) const
{... compare Point3D part...}

};

... samefor ColoredPoint...

or. All Rights Reserved

binary operators (66)

Invocation

bool compare(Point2D& lhs, Point2D& rhs)

{ return (lhs

Point3D origin(0,0,0);
Point3D center(0,0,100);

... compare(origin,center) ...

... origin == center ...

Point3D origin(0,0,0);
ColoredPoint here(0,0,RED);
... origin == here ..

invokes Point3D: :
equalsToPoint3D(Point3D&)

invokes Point2D: :
equalsToPoint2D(Point2D&)
i.e. compares 2D coordinates

binary operators (67)

Mixed-Type Comparison

Point2D& Point3D&

static type
gacyne i i Colored i

Point2D | Point3D Point Point3D

static type dynamic type

Point2D&

Point3D

Point3D&

or. All Rights Reserved

binary operators (68)

Transitivity

Point2D origin(0,0);
ColoredPoint start(0,0,WHITE);
ColoredPoint goal (0,0,RED);

if (start == origin && origin == goal)

// ...itshould follow that start == goal ...
assert(start == goal);

e Conceptua problem:

— Slice comparison will always lead to intransitive, incorrect
comparison if different "dices' are involved.

right 1995-2004 by @ Langer. All Rights Reserved.

binary operators (69)

Transitivity

* Mixed-type comparison is non-transitive.
» How about mixed-type assignment ?

Point2D origin(0,0);
ColoredPoint start(0,0,WHITE);
ColoredPoint goal (0,0,RED);
start = origin = goal;

// ...itshould follow that start == goal .=
assert(start == goal);

... exactly the same conceptual problem !!!

nger. All Rights Reserved

binary operators (70)

35

What's the crux?

* The underlying problem lies in the semantics of our
mixed-type operations.
— Correct semantics require a projection.

Example:
— A Point3D iscomparableto aPoint2D
if and only if the 39 coordinateis 0.
Point2D origin(0,0);
Point3D start(0,0,0);
Point3D goal(0,0,1);

if (start == origin && origin == goal) | (0,0,0) (0,0,1)

elika Langer. All Rights Reserved.

binary operators (71)

Projection

* Projections are debatable.

» Example:
— A ColoredPoint iscomparableto aPoint2D
if and only if the color iSBLACK. Or WHITE ? Or RED ?

— It followsthat aPoint3D is comparable to aColoredPoint
if the 3 coordinateis 0 and the color is BLACK

binary operators (72)

Misconception

» We are using different notions of comparison:
— comparison of derived types includes derived-specific parts
— base class comparison ignores derived-specific parts
— mixed-type comparison does yet another thing

» Since we use the same name (e.g. operator==) for all notions
we expect transitivity across different notions of comparison.

— that's only doable with projections

@ Langer. All Rights Reserved.

binary operators (73)

Many Distinct Operations

* Instead of unifying different notions under one umbrellawe
could keep the different notions distinct.

Benefit:

transitivity within one notion of comparison is more natural
leads to anotion of comparison for each classin the hierarchy
no overriding or polymorphic behavior

must use different function names with different signatures for different
notions

— compare2DPart, compare3DPart, ...

— assignPoint2DPart, assignPoint3DPart, ...
no implicit dicing (you explicitly say what you want)

anger. All Rights Reserved.

binary operators (74)

37

Type-Specific Operations

class Point2D

friend bool compare2DPart(const Point2D& lhs, const Point2D& rhs);
};
class Point3D : public Point2D

friend bool compare3DPart(const Point3D& lhs, const Point3D& rhs);
}:

Point2D origin(0,0);

ColoredPoint start(0,0,WHITE);

ColoredPoint goal(0,0,RED);

ifT (compare2DPart(start,origin) && compare2DPart(origin == goal))

// ...it should follow that start == goal ...
assert(compare2DPart(start,goal));

binary operators (75)

2DPoint Comparison

Point3D&
static type

dynamic type Colored

athwmi(Wnamcwpe Point2D | Point3D Point Point3D
ColoredPoint

Point3D

Point3D&

nger. All Rights Reserved

binary operators (76)

38

3DPoint Comparison

Point2D& Point3D&
static type

rhs

dynamic type Colored

R T Point2D | Point3D Point Point3D
Point2D
Point3D

ColoredPoint

Point3D

Point3D&

binary operators (77)

Many Distinct Operations

Downside:
* thereisno operator== any longer

— thereisnot just one notion of comparison for all classesin the
hierarchy

» operators such as operator=, operator==, operator<, efC. may
be required by other components
— e.g. hon-assignable types cannot be element typesin STL containers
— not a problem for homogenous collections such as STL containers
»we cannot instantiate STL containers on reference types anyway
— might be problematic in other context

or. All Rights Reserved

binary operators (78)

39

Recap (i)

* non-virtual binary operation
— Leadstoradical dicingin all cases.
— Even derived objects are sliced to their base class parts.
— Asymmietric, non-transitive.
— Usually undesired.

* virtual binary operation with typeid check
— Eliminates al dicing.
— Mixed-type assignment results in an exception.
— Unifies different notions.
— Symmetric, transitive.
— Recommended.

Langer. All Rights Reserved

binary operators (79)

Recap (ii)

« virtual binary operation with double/table dispatch
— Allowsdlicing in all cases.
— Mixed-type assignments lead to base class dlicing.

— Slicing is non-transitive or has debatable semantics
(projection).
— Rarely agood idea

* No assignment
— Makes dlicing explicit.
— No unification of different notions.
— No polymorphic behavior.
— Symmetric, transitive.
— May or may not be the right approach.

Langer. All Rights Reserved

binary operators (80)

40

Conclusion

* |t'smore adesign issue than an implementation issue.

» Thetrouble starts with class hierarchies
— where operations can be applied to objects of different types
— through base class references

* Isinheritance the right design choice in the first place?

— isaColoredPoint a Point? or is a ColoredPoint an abstraction
that consists of a Color and a Point?

— isaPoint3D an Point2D? are there Point2Ds? is Point2D
concrete or an abstraction?

— isaStudent a Person? or is"Student" arole of a Person?

Langer. All Rights Reserved

binary operators (8 1)

Use inheritance judiciously

» Avoid hierarchies of value types.

— Without class hierarchies thereis no inadvertant mixed-type
operations.

— Use composition instead of inheritance of data.

Hierarchies of value types create | ots of issues regarding base -
derived class relationships.
— Affectsall operations that involve two objects from the hierarchy.
» Assignment
» Copying
» Comparison

>

Langer. All Rights Reserved

binary operators (82)

41

Semantics of binary operations

» Carefully figure out which semantics a binary operation
should have.
— Critical cases are operations performed on objects of different
types.
— Invocation cannot be prevented because of the base-derived
relationship.

» Define sensible semantics for the mixed-type case:

» Recommended:
— Perform type check and reject mixed-type operation.

binary operators (83)

Recommended Assignment

class Point2D
{public: ...
virtual Point2D& operator=(const Point2D& rhs)
{ ---
if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();
...assign Point2D part ...

};}

class Point3D : public Point2D
{ public: ...
virtual Point3D& operator=(const Point2D& rhs)

{

if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();
...assign Point3D part...

Point3D& operator=(const Point3D& rhs)
}_{ return operator=(static_cast<Point2D&>(rhs)); }

... samefor ColoredPoint ...

Langer. All Rights Reserved

binary operators (84)

42

Recommended Assignment

class Point2D
{public: ...
Point2D& operator=(const Point2D& rhs)
{ return doAssign(rhs); }
protected:
virtual Point2D& doAssign(const Point2D& rhs)

if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();
3 ... assign Point2D part ...

class Point3D : public Point2D
{public: ...
using Point2D&: :operator=;
protected:
virtual Point3D& doAssign(const Point2D& rhs)

{ ...

if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();

} ... assign Point3D part ...

};

...samefor ColoredPoint ...

© Copyright 1995-2004 by Angelika Langer. All Rights Reserved
http:/www.An cor
last update: 11/6/2

binary operators (85)

Recommended Comparison

class Point2D
{friend bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();
... compare Point2D part...

}:}

bool operator==(const Point2D& lhs, const Point2D& rhs)
{ return lhs.equals(rhs); 3}

class Point3D : public Point2D
{friend bool operator==(const Point2D& lhs, const Point2D& rhs);
private:
virtual bool equals(const Point2D& other) const
{ if (typeid(*this) != typeid(rhs))
throw TypeMismatchException();
3: } ... compare Point3D part ...
... samefor ColoredPoint ...

© Copyright 1 y lika Langer. All Rights Reserved

http:/www.A binary operators (86)

last updat

43

Contact

Angelika Langer

Training & Mentoring

Object-Oriented Software Development in C++ & Java
Munich, Germany

Email: info@AngelikaLanger.com

http: /lIwww.AngelikaLanger.com

lika Langer. All Rights
m

binary operators (87)

44

